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SUMMARY 

A comprehensive analytical design procedure for the installation of simple 
pendulums on the blades of a helicopter rotor to suppress the root reactions is 
presented. To achieve this goal, a frequency response analysis is conducted of typical 
rotor blades excited by a harmonic variation of spanwise airload distributions as well as 
a concentrated load at the tip. 

The structural modeling of the blade includes elastic degrees of freedom in flap and 
lead-lag bending plus torsion with a hingeless hub constraint. Simple pendulum 
absorbers are individually considered for both flap and lead-lag types of motion. The 
inertial reaction forces and moments at the pendulum hinge are formulated. On the 
basis of a rational ordering scheme the general nonlinear equations of motion for the 
rotor-pendulum system are linearized in the perturbation elastic blade displacements 
and pendulum angle. These linearized equations include the effects of spanwise airload 
distributions associated with the elastic deformations and the cyclic pitch environment 
of forward flight. A quasi-steady aerodynamic representation is utilized in the 
formation of these airloads. The solution of the system equations is based on their 
representation as a transfer matrix. 

The numerical results presented here pertain to both uniform and nonuniform 
hingeless rotor blades. These results include the effect of pendulum tuning on the 
minimization of the hub reactions. It is found that a properly designed flapping 
pendulum attenuates the root out-of-plane force and moment whereas the optimum 
designed lead-lag pendulum attenuates the root in-plane reactions. A properly tuned 
pendulum can attenuate the vibratory loads by generating appropriate forces at its 
attachment point with the blade. These forces redistribute the loads on the blade so 
that only a small portion of the reactions are transmitted to the hub. 

For optimum pendulum tuning the parameters to be determined are the pendulum 
uncoupled natural frequency, the pendulum spanwise location and its mass. It is found 
that the optimum pendulum frequency is in the vicinity of the excitation frequency. In 
the case of an off-tuned pendulum the result can be either a slight-to-moderate 
degradation in pendulum absorber effectiveness or a drastic increase in hub reactions. 
Although the uncoupled natural frequency of the pendulum is independent of the mass of 
the pendulum, a proper choice of the mass is required to generate an optimum force to 
attenuate the root reactions. 

A pendulum can be tuned and its optimum mass determined by .excitation with a 
concentrated simple harmonic load at the tip. However, it is necessary to utilize 
distributed air-loads to accurately determine the attenuation of the root reactions. The 
damping at the pendulum hinge has a small effect on the hub reactions once the 
optimum pendulum tuning is established. For the optimum pendulum a parametric study 
is conducted. The parameters varied include prepitch, pretwist, precone and pendulum 
hinge offset. 

INTRODUCTION 

Vibration has always been a significant detriment to helicopters which is not 
surprising in view of the fact that a major percentage of a helicopter% mass consists of 
rotating components such as engines, rotors, gearboxes and drives. These revolve at 
different frequencies, though most are multiples or submultiples of the main rotor 
frequency, and any out-of-balance forces are easily transmitted to the light airframe. 
There is also the possibility of damaging beat frequencies arising in those few cases 
where rotational rates are not synchronous. 



In addition to the inertially induced vibrations, the unsteady air loads on the main 
and auxiliary rotors significantly contribute to the vibratory environment. These 
unsteady aerodynamic reactions are caused by the local periodic dynamic pressure on 
the main rotor blades in forward flight and the cyclic pitch changes imposed by the 
rotor head. In response to these unsteady loads the elastic blades are continually 
deforming which induces additional unsteady aerodynamic loading. 

An increasing demand for the reduction of helicopter vibration has been dictated by 
the expansion of flight envelopes coupled with more stringent requirements for crew 
and passenger comfort as well as improved reliability and maintainability. 

The rotor system, which transmits the vibratory airloads to the fuselage through 
the rotor shaft, is one of the most significant contributors to the vibrations of the 
helicopter. The rotating blades create vibratory airloads containing all harmonics of 
the rotor rotational frequency. As the loads from the individual blades combine at the 
rotor hub, some harmonics cancel each other while others are additive. The loads that 
are additive are passed from the blades to the pylon and then to the cabin through 
complicated dynamic load paths. These loads are felt as vibratory forces and moments 
whose frequencies are integer multiples of the blade passage frequency (number of 
blades times rotational frequency). 

Dynamic systems that reduce the vibration in helicopters may be classified into 
five groups: 

(1) Excitation reducers (blade aerodynamics) 
(2) Attenuators (blade dynamics with or 

without hub motion) 
(3) Absorbers (hub dynamics) 
(4) Isolators (pylon dynamics) 
(5) Cabin Suppressors (fuselage dynamics) 

These systems are described below and specific examples are given. 
Excitation reducers are devices that either reduce aerodynamic forces on the 

blades, or alter the hub moments and shears by generating counter-influencing 
aerodynamic forces on the blades. Higher harmonic blade pitch control devices (ref. 1) 
fall into this category. In reference 1 a wind tunnel test has been used to evaluate 
higher harmonic blade pitch for the reduction of helicopter vibration. The higher 
harmonic pitch was obtained by higher harmonic oscillation of the swashplate. The test 
results indicated reduction of fuselage vibratory loads. 

The attenuators are those dynamic devices that result in low hub shears and 
moments while the blades are subjected to specified aerodynamic excitation forces. An 
example of this category is a midspan or tip weight that may move the natural 
frequency of a mode away from exciting harmonics or reduce the modal forces at the- 
blade root. 

Absorbers are devices that are incorporated at the hub (or blade root) and absorb a 
large portion of the hub shears or moments causing transmittal of only the remaining 
forces to the mast. Examples are the simple and bifilar pendulums. 

Isolators are generally integral to the pylon assembly and reduce greatly the forces 
and moments transmitted to the fuselage with respect to the forces applied on top of 
the mast. 

Cabin suppressors reduce the vibration in the cabin for prescribed forces and 
moments applied by the pylon on the fuselage. 

One of the five categories, the pendulum absorber, has proven to be quite 
successful as reported in references 2 to 6. Such a technique consists of mounting a 
simple or bifilar pendulum on each rotor blade near the hub. The blade-mounted 
pendulum absorbers modify the response dynamics of the blades, and reduce the 
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helicopter vibrational levels. All reported work has consisted of an expensive and time- 
consuming flight test program to establish a set of acceptable pendulum parameters. 
As the flight tests become more and more expensive, an analytical study is needed for 
pendulum design. 

Murthy and Hammond (ref. 7) have studied the effect of a pendulum absorber on 
the natural frequencies and mode shapes of a rotor blade. A vibration analysis of rotor 
blades undergoing coupled flapwise bending, chordwise bending, and torsional vibrations 
with a spherical pendulum absorber was presented. A portion of the investigation 
included a reduction of the spherical pendulum to a simple flapping pendulum. It was 
shown that the pendulum absorber displaces original blade natural frequencies that are 
‘in the vicinity of the pendulum tuning frequency(ies). The spherical pendulum 
introduces two modes between the displaced original modes of the blade, whereas the 
simple flapping pendulum introduces one mode. Mode shape results were not presented 
in the report. It is worth mentioning that the equations of motion were based on the 
linear analysis presented by Houbolt and Brooks (ref. 81, and no damping terms were 
included. Also the damping at the pendulum hinge was not considered. 

The principal aim of the present study is to establish comprehensive analytical 
design procedures and criteria for the installation of simple pendulums on the blades of 
a helicopter rotor to suppress the force and moment reactions at the hub during forward 
flight conditions. 

The objectives of the present investigation can be stated as follows: 
(1) Develop a mathematical model to represent the blade-pendulum system. A 

single nonuniform rotor blade with a hingeless hub restraint undergoing coupled flapwise 
bending, chordwise bending, and torsional vibrations is considered. Simple pendulum 
absorbers are individually treated for both flap and lead-lag types of motion. The blade 
is excited by an azimuthal harmonic variation of spanwise airload distributions 
associated with the elastic deformations and the cyclic pitch environment of forward 
flight. 

(2) Find the dynamic response characteristics of the blade-pendulum system, using 
the transfer matrix method (ref. 9). 

(3) Determine the optimum pendulum tuning to suppress the hub reactions. This 
entails the minimization of these reactions by appropriate variations of the pendulum 
parameters for a given excitation frequency. The pendulum parameters include the 
uncoupled pendulum frequency, hinge spanwise loaction and pendulum mass. 

(4) Conduct a parametric study of the optimum tuned configuration. The 
parameters to be varied include pendulum hinge offset, precone, prepitch and pretwist. 
The intention of this investigation is to document the effects of these parameters on 
the optimum configuration previously established and thereby provide useful design 
criteria for future installations of pendulum absorbers. 

SYMBOLS 

airfoil lift-curve slope 
reference frame which rotates with speed S2 with 
respect to the stationary inertial frame Gz 
pendulum hinge friction coefficient, equation (35) 
rotor thrust coefficient 

blade chord 
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airfoil profile drag coefficient 
Young’s modulus of elasticity 
mass centroid offset from elastic axis, positive when 
forward of the elastic axis 
aerodynamic loads vector, equation (133) 
components of aerodynamic forces per unit length in y’, 
y’, z’ directions 
shear modulus 
acceleration due to gravity 
“fixed” unit vectors with -k in direction of rotation of 
@in @, figure A-l 
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blade cross-section moment of inertia about y’ axis 
blade cross-section moment of inertia about z’ axis 
unit vectors assoicated with undeformed blade coordinate 
system, figure A-l 
unit vectors associated with deformed blade coordinate 
system, figures 1, A-2 
torsional rigidity constant 

radius of gyration of blade cross section 
mass radius of gyration of blade cross section 
mass radii of gyration about n and C axis, respectively 
components of generalized nonconservative (aerodynamic) 

forces in y and z directions 

length of pendulum 
mass of the pendulum 
twisting moment about the x and x’ axes 

bending moment about y and y’ axes 
bending moment about z and z’ axes 
generalized nonconservative (aerodynamic) moment about 

x axis 
mass per unit length of the blade 
time independent average normal force on the pendulum 
bearing, equation (35) 
fixed point in@andg at the root of the blade, figure A-l 
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point transfer matrix of the pendulum 
length of blade 
inertial reference frame 
transfer matrix of the blade from 0 to x 
initial radial blade tension, equation (10) 
time 
radial, tangential, and perpendicular components of 
velocity for blade airfoil section 

elastic displacements in the x,y,z directions, 
respectively, figure A-2 
wind velocity 
axial force (tension) in the x, x’ directions, 
respectively 
shear force in the y, y’ directions, respectively 
shear force in the z, z’ directions, respectively 
induced downwash velocity at rotor, positive 
downward 

pendulum weight 
inertial axis system with origin at hub centerline and 
2 normal to hub plane, figure A-l 
mutually perpendicular axis system with x along the 
undeformed blade and y toward the leading edge, 
figures A-l 
a set of Cartesian coordinates with origin at a point 
along the deformed blade with x’ remaining tangent 
to the elastic axis and y’ and z’ along principal axes 
for the cross section, figures 1, A-2 
state vector, equation (1) 
shaft angle 
precone angle, figure A-l 
small parameter of the order of the bending slopes, 
also airfoil section pitch angle with respect to free- 
stream velocity, figure 7 
sectional coordinate normal to n axis at elastic axis 
(same as z’), figure 1, also damping ratio 
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Subscripts: 

A 
P 

Superscripts: 

L 
R 
T 
-1 

Notations: 

( 1’ 

( ’ 1 
t-1 

sectional coordinate corresponding to major principal 

axis for a given point on the elastic axis (same as y’), 
figure 1 
pitch angle, equation (125) 

collective pitch, equationt 125) 
cyclic pitch components 
pretwist, equation (126) 
pretwist per unit span, positive when tip angle is 
larger, equation (126) 
inflow ratio, positive upward 
slope of deflection curve in the plane of rotation, 

dvldx 
advance ratio, uf i2R = VI cos as 
s!ope of deflection curve normal to the plane of 
rotation, dwldx 
mass density of blade, also mass density of air 
elastic twist about the elastic axis 
blade azimuth angle measured from downwind position 
in direction of rotation 
rotational speed of the blade 
uncoupled natural frequency of the simple pendulum 

at the pendulum hinge location 
at the pendulum mass location 

immediate left 
immediate right 
transpose of matrix 
inverse of matrix 

differentiation with respect to x, also deformed 
coordinate system 

differentiation with respect to time 
amplitude of simple harmonic quantity 

6 



BLADE EQUATIONS OF MOTION 

The equations of motion which are used to represent the structural dynamic 
characteristics of the helicopter blade are based on the development reported by 
Hodges and Dowel1 in reference 10. The mathematical model chosen to represent the 
rotor blade consists of a straight, slender, variably twisted, nonuniform beam which can 
undergo combined flapwise bending, lead-lag bending and torsion. The elastic axis, the 
mass axis, and the tension axis (area-centroid axis) are taken to be noncoincident. The 
elastic axis is inclined to the plane of rotation at a small angle in order to accommodate 
any built-in coning (precone). The use of an actual helicopter rotor blade as a model 
would be a more formidable task because of the nonhomogeneous, anisotropic 
structures found in typical blades. 

Several orthogonal coordinate systems and coordinate transformations (Appendix A) 
are employed in the derivation of the equations of motion. The beam cross section is 
shown in figure 1 before and after deformation. The n and 5 axes are the principal axes 
of the cross section for the shear center. The cross section is assumed to be symmetric 
with respect to the n axis. The deformed beam is shown in figure 2(a) with force and 
moment resultants acting on the face of a cross section. The x, y, z coordinate system 
is the preconed undeformed system. At any point along the deformed beam, x’ is 
tangent to the deformed elastic axis. The y’ and z’ are identical to the n and 5 axes, 
respectively, when the beam is deformed. 

A mathematical ordering. scheme which is consistent with the assumption of a 
slender beam is adopted for the purpose of systematically discarding elastic and 
dynamic terms which are of higher order in the equations of motion. The ordering 
scheme is consistent with the small deformation approximation in which the strains are 
negligible compared to unity and the dimensionless axial deflection u/R is generally 
taken to be of the same order of magnitude as the square of v/R or w/R and thus is 
small with respect to unity. These assumptions can be systemized by introducing c, a 
parameter of order v/R or w/R. The ordering scheme associated with the above 
consideration is fummarized in Table 1. Within the force and moment expressions, 
terms of order E 
force expressiy 

are neeected with respect to u$ty. Thus, if the largest terms of the 
are 0( E: ), then all terms of 0( c ) are retained (first-order tern@, all 

terms of o( E ) are retained (second-order terms), and generally terms of O( c ) are 
discarded. 

The blade equations of motion will be written in terms of the state vector { 2 ) 
where 

{Z(x,t) IT = tv w 4 v v Mx My MZ vx vy vzJ (1) 

It may be noted that the above state vector does not include the axial deflection, u. In 
order to obtain a set of linear equations for the state vector components, u must be 
eliminated. The components of the state vector, { 2) , can be chosen several ways, but 
they are chosen here such that they represent the physical quantities of deflections, 
slopes, moments, and shears. This is not absolutely required but highly preferable for 
application of the transfer matrix to obtain the dynamic response characteristics. 

The equilibrium of the forces and moments that act on a differential beam element 
is now considered. In this consideration the element is formed by slices parallel to the 
yt-plane, because this choice leads to rather simple results. The forces that act on such 
an element are shown in figure 2(a); the moments, in figure 2(b). The quantities p , p , 
p , q , q and q are resultant force and moment loadings. Summation of the mo&en& 
abou? t& x-, 6, and z-directions lead to the following equilibrium conditions for 
moment and shear: 



TABLE 1. - ORDERING SCHEME FOR ROTOR 

BLADE PARAMETERS 

u 
R = O( c2) 8 = O(l) 

Y 
R = O(c) 

% 
= O(E) 

g = O( E) kA 
R = O(s) 

4’ = O(c) km 
R = O(E) 

x 
R = O(1) R( Y = O(1) 

Y 
R = O(c) 

p= O(1) 

z 
R = Of&) 
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h/l’, + vz v’ -vy w’ + qx = 0 ( 2a) 

M’ y -vz + vx w’ + qy 

ha’, + vy -vx v’ + qz 

V’, + Px 

Vly + Py 

= 0 (2b) 

= 0 

=o 

(2c) 

(2d) 

V’, + P, = 0 (2f) 

The applied loads p , p , p , q , q , q due to inertial and aerodynamic loadings are 
functions of v, w, I$ anaa &ng&d?nalyrac6al deformation u in the x direction. The only 
effective aerodynamic loading to be considered in this analysis will be forces in the y 
and z directions given by Lv and Lw, 
by M 

respectively, and moment about the x - axis given 

it 
The inertia loadmgs, which consist of the forces and moments which oppose 

accel ritions of the blade elements, are derived in reference 10 whereas the 
aerodynamic loadings L , L and M 
aerodynamic loads are tierivy; later 1 4 

are left in this symbolic form. These 
this text. The procedure that follows is 

employed in the derivation of the inertia loading which is given in reference 10. The 
acceleration of any mass particle on the vibrating, rotating blade is derived and the 
components in the x-, y- and z- directions are obtained. These component accelerations 
include terms for the Coriolis, transverse and centripetal accelerations along with 
higher order terms. The inertia force and moment loadings are then obtained by 
integrating over the cross section. 
the adopted ordering scheme, 

By dropping higher order terms in accordance with 

obtained: 
the following resultant loadings to second order are 

PX 
= m(Q2x+2Qt)-mBpcoG 

Py = -mV+meI$sin 8 +mf12[v+ecos(e +@I] 

+ 2m Sz ( B pc&ti) + 2m SIe (9 cos 8 + 9 sin 0 1 + Lv 

PZ 
= -mG -me $cos 8 -m Q2 6 

PC 
x -2 m S2BpcG + Lw 

qX 
= me(V sin 0 -‘ui cos 0 ) -m Q2ev sin 0 -m Q 2e B PC 

x cos 8 

-rnki$ -$ m n2(kk2-k:L) sin 2( 0 ‘4) + M6 

( 3a) 

( 3b) 

(3c) 

(3d) 

qY = me( R2x sin( 8 + 49 + 2 Q+ sin 0 1 (3e) 

4, 
=-me(Q2xcos(e +4)+2Scos e) (3f) 

The underlined higher-order terms could be dropped consistent with the ordering 
scheme, but .this would eliminate torsional inertia. In the special case of rotor blade 
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configurations of very low torsional rigidity, these terms may contribute substantially 
to the magnitude of the torsional natural frequency; hence, they will be retained (ref. 
10). 

There are now 6 equilibrium equations, equations (2a) - (2f), and 10 unknowns, u, v, 
w, I$, M , M , M , Vx, V , and Vze 
relations &e r&quir%d to exsress M 

In addition, 4 force and moment deformation 

moment resultants are 
, M , MZ, V in terms of u, v, w, $ . The force and 

expressed’ in Yterms & the deformations by resolving the 
distributed stresses into a resultant force and moment system acting at the elastic axis. 
These relations given in reference 10 are written in the deformed body axis system as 

Vx’ = 

Mx, = 

12 12 
EA t u’+ 5 + 5 +ki0’ +eA[vllcos(e+~)+wIIsin(e ++ )] (4a) 

92 12 
GJ $‘+ EAk@ + 4)‘(u’+ 5 + 5)+ EB*10t2~1 (4b) 

-EBq 0’(v” cos 8 + w” sin 8 ) 

M = 
Y’ 

EIy, [VII sin ( 0 + 9 ) -w” cos (e + 4 )] (4c) 

12 ,2 
M =I = EIZ, [V”cos(e+ $)+wl~sin(e+$)]-EAeA(ut+$-+~)-EB.Jel$’ (‘+d) 

where BP and B?j are section constants. defined by 

and A is the blade cross-section area effective in carrying tension. 
The underlined terms may be neglected according to the ordering scheme. 

However, as discussed before, these terms are important for configurations with low 
torsion stiffness. In equations (4a) - (Bd), the terms, which come from the warp effect 
are omitted due to its relative smallness for closed cross sections. 

The force and moment deformation relations, equations (4a) - (Ird), can be readily 
transformed into the undeformed body axis system using the transformation matrix of 
Appendix B. The resultant moments are: 
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J 

“X 
= GJ +‘+ EAk2,(e +$)‘(u’+F 

+ EBP et2 $’ -EBq 8’ (v” cos 8 + WI’ sin e) 

J 
-h%Y!A(U’+$‘-+ $5 W sin 8 -WI cos e ) 

+ (EIZi -EIy,) [i (v’v” -w’w”) sin 2 6 + (y’w” 

+ wV*) sin’ 8 1 + EI 
Y’ 

v’w” -EIZl v”w’ ( 5a) 

2 J 
M 

Y 
= c3 +v + EBS 8 ’ 41 sin 6 + EAeA (u’ + $ + %) 

l sin (8 + $1 -(E$, -EIy,) [w” sin’ (0 + $1 

+$v”sin2(e+$)]-EIylw” ( 5b) 

MZ = GJ ,#Iw’ -EBj 8 ’ +’ cos 8 -EAeA(u’ 

‘I2 2 v;: COS ( 8 + I$ ) + (EIZ, 31 +- +- 
Y’ 

) 

.- i [WI, sin 2 ( 8 + 0 1 -v” sin2(e + $)] + EIZ,v” ( 5c) 

The resultant axial force in the undeformed body axis system is 

vX = Vx’ -Vy, [vtc0s(e+4)+dsin(8++)] -V,, [-Vsin(b+$) +wkOs(e+e)] 
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For rotor blade applications the second and third terms on the right- hand side are 
negligible to second order (ref. 10); thus, 

‘2 12 

vX = Vx’ u’+F +F +k2, e~gkA [Pcos (0 + $I+ w”sin (0 +#)I ( 6) 

In the above expressions all terms above second order have been neglected. As a final 
step the following definitions are introduced. 

W’ 2 v ( 7b) 

Equations (21, (51, (6), and (7) represent 12 independent equations for the 11 state 
variables and the elastic elongation, u. In order to obtain a set of linear equations for 
the state vector components, u must be eliminated. This will be accomplished by 
defining the time independent tension, To, as 

R 
T s 

0 

/ 

mQ2xdx 

In the process of linearization, the following approximations will be made 

sin(8+4) 2 sin 8 + $ cos 8 

code++) I c0s e- 9 sin8 

$sin2(8+$) 1 isin 28+ 4~~0s 28 
sin2(t3 + $1 Ir sin20 + 41 sin 2 8 

i 

Equation (6) can be rewritten as 

pt cos 8 + eAv 1 sin 8 

( 8) 

( 9) 

The left-hand side of equation (9) appears in equations (5) with both constant and linear 
coefficients. When the coefficient is constant it shall be represented as written above 
but with a linear coefficient it will be approximated as 

‘2 12 T 
(u’ + 5 + %I0 z -& 

12 

(10) 



In the process of linearization, all steady-state values are neglected except the 
initial radial tension, and only the linear terms in the state variables are retained. 
These steady-state values would correspond to an equilibrium flight condition in hover. 
It is anticipated that these equilibrium hover values would have little effect on the 
dynamic response characteristics in the forward flight condition of this study. The set 
of linearized first-order differential equations are given below 

v’ = p (11) 

W’ =v (12) 

@*(GJ+k$+,To+EB~ ef2) = -k2A eNvx + EA(k; 8 ‘)2 9’ 

-EAkX 8 ‘eA ( p’ cos 8 + V’sin 8 ) + EB!j 8 I( ~~1~0s 0 

+ v’sin 0) + eA o T (usine -VCOS e) + M 
X 

(13) 

pt (EI,, cos2 8 + EIyl sin20 ) = MZ +EB?jW$‘cose +eAcose Vx 

-EAkieA e@4fcos 8 +EAei(u1cos2e + v’sinecose) 

-eA To0 sin 8 -$EIZl -EIy,)v t sin 28 (14) 

2 v ( (EIy, cos 8 + EIZ, sin20 ) = -My + EBZ 0 ’ $I f sin 8 + e A Vx sin 8 

-EAki eAe I 4” sin 8 + EAei ( u’sin 8 cos 8 + v t sin28 ) 

+eATo $COS 8 - i (EIZ, -EIy,) u t sin 2 8 (15) 

M’, = mn2ex(vcose - usin )+(e A To c0s 8 )‘v -(eA To sin 8 )’ u 

+ mkm 26; [ +me (sz2v-i)sin 8 +iifcose 1 
+ mSZ2(k2 k2 

m2- ml 
)‘+cos28 -M 

4’ 

M’Y 
= V,-Tov-2mPe~sint3-mS22ex+cos8 

(16) 

(17) 
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M; = To v -Vy + 2 m Qe+ cos 8 -mQ 2ex + sin 9 

x= -2mQ+ 

(18) 

(19) 

v’Y 
= mV-me$sine-m*2v+mQ2e@sin0 -2 m QBpc 6 

-2 mQe ficos e-2 mQe <sine-LV ( 20) 

VIZ = m\ij+me~cose+2m~B 
PC 

+-Lw (21) 

It may be noted that the three equations for the elastic slopes (eqs. (13), (14), and 
(15)) are coupled in their derivatives and must be solved simultaneously. These 
equations are decoupled by a straight forward application of Cramer’s rule to obtain a 
set of linear first order differential equations in terms of the state vector so that the 
transfer matrix method can be applied as discussed later in this study. 

Excitation of the blade is due to various simple harmonic airloads. The solution to 
the set of equations will be treated as individual contributions associated with each 
harmonic of the excitation loading. Such a solution for the nth harmonic of the state 
vector can be written in complex form as 

{ Zn(x,t)) = Re({z,,(x)} eiwt) (22) 

where { zr,(x> ) is the amplitude vector of the nth simple harmonic response, and 

W = n Q Z the frequency of the excitation loading 
i EVi 

The above solution will be discussed in more detail with respect to the aerodynamic 
loading. Substituting equation (22) into equations (11) to (21) yields the following matrix 
equation for {Z), the nth harmonic, 

{ z (x) } ’ = [A(x)] { z(x)) + { Fa W) 
where{ Fa} is the amplitude vector of the aerodynamic loads, defined by 

( 23) 

{Fa]’ E Lo 0 0 0 0 -8+ 0 0 0 -iv -iw] 
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Note that the matrix, [A], includes complex terms due to retaining the linear rate 
terms (Coriolis intertial forces). 

Evaluation of the order of magnitude of the individual elements of the complex 
matrix [A] is made. Consistent with the adopted ordering scheme, only terms of first 
and second order are retained. It may he noted that in the process of decoupling eqs. 
(13), (14), and (Ifi), terms of higher order are encountered. The resulting nonzero 
elements of [A] become 

A14 = 

A25 = 

A34 = 

A35 = 

A36 = 

A37 = 

A38 = 

A39 = 

A43 = 

A46 = 

A47 = 

A48 = 

A49 = 

A53 = 

A56 = 

A57 = 

A58 = 

A59 = 

1 

1 

EIy,(EIZ,-EAei) eA To sin 8 /D 

-Aj4 cot 8 

EIy ,(E$-EAe$,)/D 

2 EIy, 8 ‘(EAkA eA -EB$) sin 8 /D 

-A37 cot 8 

EIy, 8 I(EB~ eA -EIZl k;)/D 

-CJ eA To (EIZl -EA ei) sin e/D 

A38 

GJ (EIZ, -EIy, -EA ei) sin 8 cos 8 /D 

-As3 sin 8 /(eA To) + CJ EIy, cos2 8 /D 

GJ EIy, eA cos 8 /D 

-A43 cot 8 

-A37 

A43 COS 8 cot 8 /k!,#+ To) -G J EIyl sin2 8 /D 

-A47 

AB9 tan e 
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A61 = 

A62 = 

A63 = 

A64 = 

A65 = 

A71 = 

A73 = 

A75 = 

A7,11 = 

A8l = 

A83 = 

A84 = 

A8,10 = 

A9l = 

A92 = 

AlO,l = 

Al0,2 = 

Al0,3 = 

Al0,4 = 

Al0,5 = 

All,1 = 

2 -me w cos 8 

-mki w 2 +mQ2(k2 - k2 ) cos 2 8 

m2 ml 
-m $I 2 ex sin 8 -(e, To sin 8 )I 

m a2 ex cos 8 + (e, To cos 8 )I 

-2 im owe sin 8 

-TO 

1 

-A71 cot 8 

-m $I2 ex sin 8 

TO 

-1 

-2im Qw 

-2im 51wSpc 

A61 

-A8l 

A71 

‘AlO, 
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A11,2 = 
2 -mw 

All,3 = 

where 

D= GJ EIy, (EIz, -EA e$ 

PENDULUM EQUATIONS 

The pendulum configurations considered are of the simple type which are free to 
oscillate in the flap and lead-lag modes. The free vibration equations of motion for 
simple pendulums in both the flap and lead-lag degrees of freedom are developed in an 
identical fashion. These equations are formulated by first determining the acceleration 
of the pendulum mass in the inertial system and then transforming it to the deformed 
blade system. The absolute acceleration is used to express the inertial reaction force 
and moment at the pendulum hinge. Setting the reaction moment about the pendulum 
hinge to zero yields the equation of motion. These nonlinear equations of motion are 
subsequently linearized by assuming small oscillations for the pendulum about the 
steady-state condition. By assuming a simple harmonic solution for the linearized 
equation of motion of the free pendulum, the deflection of the pendulum is obtained in 
terms of the blade deflection. The point transfer matrix at the pendulum hinge station 
on the rotor blade is derived by simple equilibrium considerations of forces and 
moments across the pendulum after linearizing the inertial forces and moments. 

Acceleration Components 

The acceleration of the pendulum mass is determined with respect to an inertial 
reference system. This entails appropriate transformations from the inertial to the 
rotating system, to the preconed system, and finally to the deformed blade section. The 
derivation of the acceleration components is given in Appendix 8. Equations (B-18) to 
(B-20) for these acceleration components are reproduced here as 

aY’ 
= i; +(nZxv+;;+n2$ x) sin8 + (i; + 2ni -Ci2v 

PC 

+ S~~X p) cos 8 -n2~c0s2e +$22csin2e (25) 
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a Z’ 
=;‘4+2ni 2 2 -n vt i2 xu)sinet(Q’xV +W 

+ 52 2 Bpc X) cos e 1 2 -n2c sin28 + 2 s2 q sin 28 (26) 

where (5, $5) is a general point relative to the deformed blade coordinate system. It 
may be noted that the gravitational contribution to these accelerations has been 
neglected. 

Flapping Pendulum 

The blade-mounted pendulum absorber is shown in figure 3. The pendulum after 
deformation is shown in figure 4. The deformed coordinates of the pendulum hinge and 
mass can be related from figure 4 and are given by 

= II cos A 

‘IP = n,J 

cp= ‘;A + IIsinA 

where 

11 E the pendulum arm length 

A =’ rotation about (0, nA9 CA> in the x’ z’ - plane 

;=ow i A = 0 (1) 

Differentiating equations (27) with respect to time yields 

i, = -Jl,i sin A 

. . 
5, = -fii sin A-8 A2cosA 

(27) 

(28a) 

(28b) 
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;r = 0 
P (28~) 

ii = 0 
P (28d) 

iP 
= fi li cos A (28e) 

. . 

rP 
= a( i cos A - i ‘sin A) (28f) 

Substituting the above expressions into equations (24) to (26), the acceleration 
components to the first order (second and higher order terms are discarded) for the 
flapping pendulum become 

a, = 
*P 

- J?.iSin A-II i2cosA-2Q;, - n2xA 

- Q2 R cos A+ 28 II A cos A sin eA (29) 

2 . . 2 
a l x 

yP 
= (L~XAVA+WA+ fl BP, A ) sin 8A 

+ (i;, 2 -2n !& binA-n2vAt !ii xA pA)coSeA 

2 2 - a nAcos eA + T 1 n2(5: A +.!& Sin A) sin 2 8A 

(30) 

a I = 
IP 

a i cos A - R A2 sin A 

- (i;, -2n !?, Asin A- R2vA + fi’x~ VA) sin 8A 

2 +(Q2XAvA+G~+ $2. 8p,xA)coSeA 

- Q2(r 1 2 A+ a sin A)sin2eA+2 n nAsin2 eA 

(31) 
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These acceleration components will be used to express the inertial reaction force and 
moment at the pendulum hinge. 

The total inertial reaction force acting on the pendulum mass, M, can be writJen in 
terms of the above acceleration components whose associated unit vectors are?, j’,j? as 

% = -M (a 
x’P 

f’ + a , fl + a 
yP z’P 

‘;<I) 

The position vector of the pendulum mass with respect to the hinge point is 

+ 
r = fi (cos A? + sin AZ’) 

and the inertial moment reaction about the hinge point is 

= -Ma cos A 0 sin A 

or 

“M = 

a l 
xP 

a l 
yP 

MRa , sin A? 
yP 

(32) 

(33) 

+M !L (aZl co&ax1 sin A)? 
P P 

-MRa, cosbj? 
yP 

(34) 

In addition to the inertial reaction moment, there is a moment due to damping at 
the pendulum hinge. This damping will be presumed to be of the linear viscous type. 
The corresponding moment reaction about the hinge can be represented as 

20 



(35) 

where 

N rsteady-state normal force on the bearing due to FAxI and F 
AY’ 

C ~pendulum hinge friction coefficient 

Since the flapping pendulum is free to rotate about the y’-axis, the y’ component of 
the inertial moment reaction is in equilibrium with the damping moment. 
equations (34) and (351, the equilibrium equation can be written as 

Using 

M Rbxl sin A -a , cos AI -CN i = 0 
P zP 

Equation (36) provides the pendulum equation of motion. The other two components of 
the inertial moment, the damping moment, and all three components of the force 
reaction provide the pendulum reactions which act on the blade at the hinge point as 

= -Max, (37) 
P 

= -Ma , 
yP 

(38) 

= -MaZ, (39) 
P 

= MRa,sinA 
yP 

= -CN i 

(40) 

(41) 

= -MRa l cos 
yP 

A (42) 
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Substituting for the acceleration components in equation (36), the pendulum 
equation can be written as 

a ii - (VA-R2 vA + Q2 xA j.1~1 sine A cos A 

+ (n 2 . . 
xA vA + wA + Q 2 BP, x,) cos fJA cos A 

+ Q2 !& cos2 eA cos A sin A 

t (2 iI+, + iI2 x,) sin A 

+(-Q2 cAsin2eA+Z ’ fi2 T)ASin2eA)COSA=-CN~/Ma (43) 

It may be noted that in the above equation the rotary inertia of the pendulum is 
neglected. This implies that the pendulum consits of mass, M, which has very small 
dimensions (point mass) in comparison with the pendulum arm. 

The nonlinear equation of motion given by equation (43) is linearized for small 
angular oscillations, 6, about the steady-state equilibrium angle of the pendulum, 60, 
where 

A =6+ 6, (44) 

Since the perturbation angle, 6 , will be fairly small as 

62 << 1 

the following approximations can be used. 

cos A E cos 60- dsin6, (45) 

sin 6 Esin cS~+ 6~0s 6, (46). 

The steady state equilibrium angle, 6 , is obtained from equation (43) by setting 
the acceleration and velocity terms to zero’(assuming that the elastic deformations are 
zero). This process yields 

XA tan 6, + cos2 eA!t sin $ = GAsin eA-i nAsin 2 eA-BF XAcOs eA (47) 

In the above equation eA is the steady-state value of the pitch angle at xA’ It may be 
noted that the steady equilibrium angle, 6,, is independent of the rotor speed. This 
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result is due to neglecting the gravitational force in equation (36). The effect of the 
gravitational force on the steady equilibrium angle and the uncoupled pendulum 
frequency is very small (ref. 7). 

Substituting equations (45) and (46) into equation (43) and subtracting the steady- 
state relation, equation (47), from the resulting equation, the following equation of 
motion for the perturbation pendulum angle is obtained. 

. . 
CN6+ *26(XA %6 +ra cos 6, 

+ 11 cos2 eAcos2d0)+ 2GvAsin b, 

+ '( fJ2x L A v~+%~)cos 8 A ( - G’ A - f12 VA + ii2xA uA)sin 8A] cos 6. 

+ 2~9~ 6~0s tio- 6 [(n2xA VA+ tiA)cOseA 

-(V, - Si2vA+ Q2xAuA)sinBA] sin $=O (48) 

In equation (48) the 6th and 7th terms (underlined terms) are nonlinear. Comparison of 
the 7th term with the 5th term illustrates that this nonlinear term is of order 15 tan 6 
compared to unity for the linear term. Since both 6 and 8 will be fairly small the: 
the 7th term can be rationally neglected. Comparison of th% nonlinear 6th term with 
the linear 4th term indicates that they are of the same order of magnitude since 

ii+ 
= O(1) 

Both of these terms will be fairly small. In the interest of linearization and the desire 
to retain an explicit damping term, the 6th term will be dropped and the 4th term 
retained. 

The steady-state normal force on the bearing can be written as 

N = Fix, + Fizl] 1’2 (49) 

where F and F are the steady-state values of 
may be MLd that%‘& generally a time-dependent 

F 
for RX” 

and F respectively. It 
e but ,is a#&ximated here by 

the steady-state value. Substituting for the acceleration components (eqs. (29) and (31)) 
in equations (37) and (39) and retaining only the steady-state terms, equation (49) 
becomes 

N= MQ2(xA+ RCOS 6,) (50) 
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It may be noted that high order terms are neglected. Substituting equation (50) into 
equation (481, the linear pendulum equation of motion becomes 

a g +c*2(~+cos 6,)6+ n Y 
XA 

cosd +II cos2eAcos26 
06 > 

0 

+ 2&?+Asin 60+ (GA+ f12xAVA)cosOACoS60 

-(ii, - Cl2 vA+ 52 2 
xA vA) sin eA cos 6. = 0 (51) 

The uncoupled pendulum equation can be obtained from equation (51) by dropping 
the blade deflection terms. The resulting equation can be written as 

s +25wp6+w;6 = 0 (52) 

where 

=&I? ( XA l/2 
wP R cos 6, + ~0s~ 6, ~0s~ eA ) (531 

5 = 
c fi(x,h + cos 60) --- (54) 

211, XA 
a cos 6. + cos2 6. sin l/2 

It may be noted that the pendulum hinge coefficient, C, in equation (54) can not 
normally be specified, but representative values of the damping ratio, 5 , can be 
estimated. 

The inertial reaction loads applied to the blade due to the pendulum will be 
considered to act at the elastic axis pendulum hinge location, (xA,O,O). These reactions 
will be treated as discontinuities in the tension, shear, and bending moment distributions 
along the blade. The values of these discontinuities can be written in terms of the 
component reactions as 
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AM X’ = MAX, + ‘1~ F~zt - ‘A FAy’ (55) 

A My, = MAP’ + c A FAx’ (56) 

AM Z’ = MAP,- ‘A FAx’ (57) 

A Vx’ = FAN, (58) 

bV 
Y’ = F/jy, (59) 

I A Vz’ = FAz, (60) 

Substitution of equations (29) to (31) and equations (37) to (42) into the above equations 
yields 

A Mx,/M = (hinA+ 6A)[(fi2xA vA+WA+ Q2BpcxA)sineA 

+ (i;, -2 n fi hsin&fi’vA + n2xA ,.,A) cos 8A 

-n 2 2 ‘IAcos eA+z l fi2( CA+ fi Sin A) Sin 2eA] 

- qA [ R i cos A- !?, A2 sin A-(GA-2Q R isin A 

2 -nZvA+ f2 xA pA)sineA 
2 +(n XA v,+w “A 

PC A 
x )coseA -fi2 cAsin2eA 

2 -n Rsin Asin 2 8A+2 Ln2 mAsin2eA] (61) 

25 



A My,/M = cA[fiisinA+ fi~2COSA+2~iA+ n2XA 

+ Q211cos A -252 !4 i\cosAsin BA I 

-c fi2 (x, + a cos A) 6 

A M,,/M = - *’ qA [IlAsinA+ a A2cos A+ 2$&, 

+ 02xA + fi2 t.cos A-2 62 fi ices Asin eA] 

- !tcos A [( R2xA VA + ‘ii, + a2f3 x 
PC A 

) sin eA 

+ (‘;A l . 

-2Q R AsmA-Q 2 2 VA+ fi xA p&os 8A 

-D 2 2 
‘lAcos $4++2 1 a 2(s A + 11 sin A) sin 2 eA] 

A Vx,/M = R isin A+ II A2 cos A+ 2Q;, 

+ Q2xA+ G2Rcos A-20 RicosAsin eA 

A Vy,/M = -(R2xA vA +i’iA+ i22$pcxA)sinf3A 

- (G’, -2Q IIi\sinA- Q2vA+ f12xA pA)cos 0A 

+52 2 2 qAcos eA+ Q2(cA+ RsinA)sin2 t!lA 

(62) 

(63) 

(64) 

(65) 
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A VZ,/M = - R ices A+ II i2sin A + (VA -2fi II isin A 

-fi 2 VA+ fi 2 2 xAvA)sineA-(n XAVA+WA 

+n2fl x )cose 
PC A 

A+ n2zA sin 2 ‘A 

2 + Cl II sin Asin 2 
(66) 

where M is the pendulum mass. 
Using the adopted ordering scheme given by Table 1 and equation (28), the orders of 

magnitude of the above expressions are as follow 

AMx,/M - 

A My,/M - 

A MZ,/M - 

AVx,/M - 

AVy,/M - 

AVZ,/M - 

O( E2) 
a 8) 
O(E) 1 

(67) 

O(1) 
as 1 
O(E 1 1 

(68) 

For inclusion in the blade equations, the shear and moment reactions must be 
transformed into the undeformed x, y, z system using the transformation matrix of 
Appendix B. The transformations consistent with the above orders of magnitude are 

A Mx/M = ( AMx,/M) - (A My,/M) ( ,.,A COS 8A + VA Sin 8 A) 

+ ( dMZ,/M) ( MA sin eA - VA ‘OS e Al (69) 

AMY/M = ( AMy,/M) kos eA - +A sin eA) - ( A MZ,/M) (sin eA + t$A cos eA) (70) 

AMZ/M = ( AMydM) (sin eA + +A cos eA) + ( dMZ,iM) bs eA - +A sin eA) (7 i ) 

27 



. _._ _-_..-_-_--- ..-- ~ ---. 
I 

where only 0 ( c2) terms and larger are retained. Similarly 

A Vx/M = A Vx,/M (72) 

A Vy/M = (A Vx,/M) uA + (A V/M) cos eA -(A VZ,/M) sin BA (73) 

AVZ/M = ( AVx,/M) VA + ( AVy,/M) sin eA + (A VZ,/M) cos CIA (74) 

where only 0 ( E ) terms and larger are retained. 
Substituting equations (61) to (66) into equations (69) to (74) and retaining only the 

linear time dependent terms (to be compatible with the completed time dependent 
blade equations), the shear and moment reactions in the undeformed preconed system 
are obtained after making use of equations (44) to (46). 

A Mx/M = [ (fish 6,’ CAlsin 8A- nAcos8A 1 tiA 

+ C (!t sin 6. + CA) cos eA + nA sin eA] [VA -2Q a fisin &o 

+ !zBcos 6. C a2f3 pc ‘A sin 0 A -n21Acos2eA 

+ n2( CA + 11 sin 6,) sin eAcos eA 1 - ‘IAa ices 6. 

- ti2 xA ( ‘IA sin 8A + CA cos 8,) PA 

+fisin 60n 2 xA VAsin 0A (75) 
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AMY/M = hA sin eA + CA cos 8A) [t 6 sin 6. + 2n +A 

-f12t 6 sin 6. -2 n !t &cos $ sin eA 1 
+ !t cos 6, sin eA [ ( fi2 xA VA + WA) sin eA 

+(i;,- 2QR6sin 6. - fi2 VA + fi 2 XA ,@ cos of, 

+ n211 6 cos 6. sin eA cos eA 1 -Q2R6sin 6,sin eA 

l B 
1: pc *A sin eA - qA cos2 eA+kA 

+ !J sin $1 sin f!, cos 8 A 1 + ~2~ xA ( qA cos eA 
. 

- 5 A sin eA) t)A -C Q2 6(xA + a cos 60) COS eA (76) 

A MZ/M = (- qA cos eA + CA sin eA) [a S sin 6, 

+2GA- A? !L 6 sin tSo -2 SJ IL i cos 60 sin eA 1 
- has docks eA [( n2 xA VA + ihjA) sin @A 

+ (i;, -2s2II isin $-S2’vA+ S12xA pA)cOs eA 

+ $8 6cos 60sin eAcOs eA] 

+ fi 2 I. 6 sin 6, cos OA c B pc ‘A sin eA 

- qA cos2 OA+ ( CA+ II sin bp)sin 0,cos 1 
+ a2xA( nAsin eA+ tAcoseA) $A 

-C Cl 2 8(x, + a cos $1 sin eA (77) 
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A Vx/M = fii sin 60+ 2 nvA-n2a 6 sin 6. -2naB;cos 6,sin eA (78) 

A Vy/M 

A VZ/M 

= 4, + 2 $2 8 &in 6, + Q2 vA 

- iI2 II 6 cos 6. sin eA + R S cos 6. sin 8 A 

. . = -w A -a b’ cos tie cos eA 

(79) 

(80) 

Since these discontinuous load reactions contain the time dependent pendulum 
angle, it must be related to the elastic displacements for its elimination. This can be 
accomplished by using the linearized pendulum equation (eq. (51) . By seeking the 
simple harmonic motion of the form 

6 (t) = 6eiw t (81) 

and corresponding harmonic solutions for the state variables, the pendulum deflection 
can be written as 

IL VAGV+WA 6w+ p,& + ‘A&,, (82) 

where 

6, = - [ (Q2+ w2)cos 6,sin eA+2inwsin S,]/a 

6, = w 2 cos $ cos e,/a 

(83) 

(84) 

6v = n2 xA cos 6. sin eA/a 

q) = - Sal2 XA cos 60 cos OA/a 

(85) 

(86) 
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- 

acw;- XA 
a = w2)+ iCQ2w (a + cos 6,) (87) 

where C can be determined from the estimated damping ratio of equation (54) as 

2 11ig( XA 
a cos (so + COS’ 6. COS2 eA)1’2 

c =- s-2 (XA/fi + cos Is,) 

The discontinuous load reactions associated with the presence of the pendulum are 
used to relate the bending moment and shear force state variables on the right side 
(outboard) of xA to those on the left side (inboard). These state variables are indicated 
in figure 5. The state variables are related as 

MR VR 
X 

= M;- AMx 
X 

= v’; - AVx 

M; = M;- AM VR = v; - AV 
Y Y Y 

MR = M;-AM, VR 
Z Z 

= v; - AVz 

(88) 

All other state variables must be continuous across the point x . 
Substituting for the shear and moment reactions, given %y equations (75)to (SO), 

with the explicit time dependency, the above relations can be described by 

LRl = [PI Iz’\ (89) 

where [P] is a “point” transfer matrix. The elements of [P] are all zero except for 

P.. = 1 
‘I 

(i = j) 

‘61 = M[(IIsin 60+ cA)cos eA+ nAsin O,] (Q2+w 2)- 6,,Mx6 

‘62 = M [(a sin 6, + CA) sin eA - nA cos eA 1 w 2- 6w Mxb 
‘64 = -M&sin 6ocos eA Q2xA- 6uMx6 

‘65 = -M&sin &o sin BA S12.xA- 6, Mxb 
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p71 = -M [( i-IA Sin eA + CA COS eA) 2iW n 

-!i cos tie sin eA cos eA (w ‘+ n2)] -6,My6 

‘72 = Mw2,cos 6,sin2 eA- ttw My6 

p73 = 
2 

-M ( qAcos eA-cAsin 0,) 51 xA 

p74 = -Mn2xAIIcos 60sin e,cos OA-6 M v Y6 

P 75 = -MQ2xA%cos 6osin20A-6vMy6 

‘81 = -M !& COS 6&20S2 eA (W2+ a2) 

4 nA cos eA - CA sin OA) 2iwa] - bvMZS 

‘82 = -Mw 2!t cos 6. cos eA sin eA - 6, MZ 6 

‘83 = -M( ‘IAsin eA+ ~~~0s 0,) Q2xA 

‘84 = MQ2xA& cos 6ocos2 f3A-6pMz6 

‘85 = M Q2 xA R cos $ cos tJA sin OA - 6v MZ d 

p91 = -2MiwQ - 6vVxd 

‘92 = - ‘w ‘x 6 

p94 = +lVx6 



Pq5 = - 

plo,l = 
-M(W2+ n2)- 6vvy6 

p10,2= -6wvy 6 

P 10,4= -6 
v vY 6 

plo,5= - 6vvy6 

pll,l= - qz 6 

P~~,~= -Mu 2 - 6w vz 6 

pll,4= - 6pvZd 

pll,5= - &v vz 6 

M 1( = sin go + CA) cos eA + n A sin eA4 n cos ‘osin ‘A 
X6 

+ o2 B pc& xA cos 6. sin 8 A I 
(90) 
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M y6 = 
-M ( qA Sin eA + 

1 
‘;A cOs eA) !& sin 6. (w 2 + n 2, 

+ [: (!&sin ‘so+ CAlsin 8A-‘1Acos 0A-j 

l a 2fisin $ sin eAcos eA+ (xA fip, sin 6. 

-Rcos2 tiocOseA) Q2Esin2 eA+ (&sin 6. I: 

+ CA) cos eA + qA sin e,] 2iw Q II cos 6. sin eA 

+ iC Q2w (x, + 8~0s bo) cos eA 
I 

(91) 

M 
26 

= M ( nACOSeA- gASin eA)!& Sin60(w 2+ti2) 
t 

+ [ (&sin 60+ CAlsin 8A-qAcos eA 1 

l S22Rsin ~5~~05~ eA+ (x B sin 6 Apt o 

- II cos2 6. cos eA) s? RCOS eA sin e, + [ ( rlA cos 0, 

- CA sin eA) sin 0, + !L sin 6. cos 2 ‘Al 

l 2i~hlP,cosbo-iC~2w(xA+~cos60)sin eA I (92) 



V xg = -M [&sin $(w2+ Q2)+2iwS2ficos $sin eA] 

V 
Y6 = 

-M [a cos 6. sin eA (w 2 + n2) -2 iw Q II sin “o] 

V Zb 
= MW 2k COS 6oCOS eA 

(93) 

(94) 

(95) 

Lead-Lag Pendulum 

The lead-lag pendulum after deformation is shown in figure 6. The equations of 
motion for the lead-lag pendulum can be derived by following the procedure used in the 
flapping pendulum case. This process yields the following equations for the lead-lag 
pendulum: 

The relation between the pendulum mass and hinge in deformed coordinates 

5P 
= Rcos A 

'Ip = rlA + !t sin A 

cp = $, 

Pendulum angle 

A :tjo+ 6 

(96) 

(97) 

where 

6 
0 

E steady-state equilibrium angle 

6 E time dependent perturbation angle 

The equation for determination of the steady-state equilibrium angle, becomes 

xA tan $ + !t sin’ eA sin go = -+cAsin2 eA+ nAcos2 eA-epcxA sin eA (98) 

The pendulum deflection in terms of the blade deflections 

(99) 
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where 

6 = (n2+ w2)cos 6ocos eA -2iwQ sin 8o]/a (100) 
V 

6w = w 2 cos 6, sin eA/a 

6 = 
lJ 

- n 2~A cos 6. cos 8 ./a 

(101) 

(102) 

lsv = - 51 2xA cos ijo sin eA/a (103) 

= acw;- XA 
a w21*iC!i12w(a+C0S 60) (104) 

2 
xl 

XA 
wp =n cos (so + cos2 do sin2 eA 

> 

2 kc ( XA 
1’2 

kcos ‘so + cos2 rSo sin2 0 A 

c = 
> 

52 (x,/a + cos ‘so) 

6 = geiwt 

(105) 

(106) 

(107) 

The nonzero elements of the point transfer matrix become 

P.. = 
‘J 

1 (i = j) 

‘61 = 
2 

M [CA- eA+(~A+“sin~o)sineA](W + n2)-6,,Mxd 

‘62 = M [CA sin 8A -( VA + k sin 6,) cos eA] W 2 - 6,Mx 6 

‘64 = -M !&sin 60 sin O.A s-i? XA-6uMx 6 
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‘65 = M&sin ti,cos eA n2xA- 6,,Mx6 

p71 = -M[hAsin eA+ CA cos eA) 2iw 51 + 11 cos tie cos 8 A 

l sin eA(w 2+ n2)] - iSv My6 

‘72 = M !& COS 6. COS2 eA w 2 - 6w My 6 

p73 = -M ( ‘IA COS eA - cA sin 0,) Q2xA 

p74 = M!&COS $cos $,sin eAfi2xA- 6 M 
Fc Y6 

P 75 = -hd t COS 6. COS2 eA fi2xA - (sv My 6 

P 81 = -M [% cos 6. sin2 eA( w 2 + Q ‘1 

-( oA cos eA - GAsin eA)2iwR] -6vMZ 6 

P 82 = M w2 R cos tie sin OA cos CIA - 6w MZ 6 

P 84 = Ma2~,a. cos 6. sin2 eA - 6v MZ d 

‘85 = -M Q 2xA II cos 6. sin BA cos BA - 6\, MZ d 

P91 = -2MiwQ - 6vVx g 

‘92 = -6wvx 6 

p94 = -6 v 
L’ x6 

p95 = -‘Q vx 6 
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plo,l = 

%0,2 = 

plo,4= 

P10,5= 

pll,l = 

pll,2= 

P11,4= 

pll,5= 

where 

-M(w2+ Q2b6VVy6 

-vy 6 

-8 v 
l.lY6 

- qf 6 

-QVz 6 

-Mw2 -6wvz6 

-6 v 
P z6 

- Gvvz 6 
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M x 6= -M 5 A cos eA + ( nA + J5 sin 60) sin eA 1 
l ($2 cos $ cos eA + iw sin tSo) 2 Q R 

-i. ~ACOS8,( g2- w2)+ fi2Bpc axA cos tjo cos eA 
I (108) 

M -M ( qA sin OA + cA cos OA) II sin do (w 2 + Q2) 
I 

+ - C 5 A sin eA + ( rjA + !t sin a01 cos 8 A ] Q2 a sin cIOsin eAc05 0 A 

+ (xA BP, sin 6. - RCOS’ 6. sin 0 A) s2 2 R cos2 0 A 

- (‘IA C +a sin 60)sineA+ i+,Cos$,]2id?!kos $coseA 

- ic 0 2td (xA + R cos fjo) sin eA I (109) 

- 



M 
2 

Z6= 
M ( nA COS eA - 

1 
GAsin eA)a sin 6,(w + n2) 

+ C ?iA sin eA -( nA + !d sin 60)cos9A]D 2gsin 6,sin’eA 

‘(xA B pc sin 6o -!i cos2 6osin 9,) fi 2 fi cos 8A sin 8 A 

- I: ( ‘IA cos eA - CA sin eA) cos 8A - fi sin 6, sin2 eA ] 

-2iwQ !4 cos 6. -iC f12w (xA + fi cos 60) cos 8A 1 (110) 

V x’s = -M [g sin 6. ( u2 + a2) -2iw Q R cos 6,cos 0 A 1 (111) 

V y6 = M P cos $ cos eA (0 2 + G2)+ 2iwQ &sin 6, 1 (112) 

V 
Z’S 

= Mw2acos 60sin OA (113) 

AERODYNAMIC FORCES 

This section is concerned with the calculation of the aerodynamic loads on a 
helicopter rotor blade in forward flight. Due to the complexity of the flow field 
involved and the interaction of different effects in the flow, a completely general 
solution to the problem has not been obtained. There are a large number of 
approximate methods available. These methods range in complexity from simple blade 
element representations to lifting surface models with freely distorted vortex wakes, 
with associated ranges in computational expense, accuracy and detail of the solution. 
Commonly used is an approach based on a combination of simple momentum theory and 
the blade element description. This method is adopted for the present study. The 
method takes no note of the reverse flow and stall. 

The aerodynamic forces are formulated from two-dimensional, incompressible, 
quasi-steady, strip theory in which only the velocity components perpendicular to the 
spanwise axis of the deformed blade are assumed to influence the aerodynamic loading. 
Account is taken of the varying freestream velocity associated with the rotating blade 
by employing Greenberg’s extension (ref. 11) of Theodorsen’s unsteady theory for 
determining the aerodynamic lift and pitching moment acting on the blade. The 
resulting expressions are specialized to the case of quasi-steady flow by setting 
Theodorsen’s circulation function to unity. Simple momentum theory is used to 
calculate the steady flow induced by the rotor. The expressions for the aerodynamic 
loading are based on the analysis reported in reference 12. 
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In Theodorsenk theory a two-dimensional airfoil is assumed to be pivoted about an 
axis which may be distinct, in general, from the aerodynamic center. The airfoil is 
pitched at an angle c(t) to the freestream flowing at constant velocity V. The airfoil is 
vertically displaced with velocity h (t) as shown in figure 7. Greenberg (ref. 11) has 
extended Theodorsen’s theory for a varying free-stream velocity V(t). The lift and 
moment acting on an element section of the blade may be expressed in terms of the 
circulatory and noncirculatory components as 

L = LC + LNC 

M = MC + MNC 
(114) 

With the airfoil pivot axis (analogous to the rotor blade elastic axis) at the airfoil 
quarter chord (the airfoil aerodynamic center) the relations for the aerodynamic loads 
per unit length may be written as (ref. 12). 

LC = 3 pacU(-U + “9 P 2 

(115a) 

(115b) 

MNC = -!jp ac (;I2 (-Up -UT i + (115c) 

MC = -$pac(tJ22UTh 

The profile drag force acts parellel to U and is given by 

D= 

(115d) 

(116) 

The components of the aerodynamic forces in the deformed coordinate system can 
be written as 

F = 
Y’ 

-LCsin a -D cos a 

(117) 

FZ, = LC cos a + LN C-D sin a 

where 

sin a = U /U 
P 
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cos a = UT/u 

Substituting equations (115a), (115b) and (116) into equations (117) yields 

F = 
Y’ 1 

FZ, = $ pat 
c 

-u u +%u 
PT 2 

-2; + (c)2; 
T2p 4 

From equations (115~) and (115d) the pitching moment can be written as 

Mx,(=M+I = -4 pac($j2 [uTi -up+ $*;I 

(118) 

(119) 

where 

‘p’ ‘T E relative velocity components in the deformed coordinate system (fig. 7) 

k E angular velocity of the blade about the x’ - axis 

V(t) r Jut + u; 
The assumed orders of magnitude of the quantities used in deriving the aerodynamic 
loads are 

!fe 
uT 

‘do 
a 

c 
R 

V. 

s-i+ 

8 

= O(E) 

= O(E2) 

= O(s) 

= 0(&J 

= O(s) 
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The aerodynamic forces in the undeformed coordinate system are obtained by using 
the transformation given by equation (A-4). To second order, the aerodynamic loads can 
be written as 

Lv (=Fy) = F ycFZ,(e + $1 

Lw (=FZ) = Fy, (0 + $I+ FZ, 

Mx = 
MX’ 

(120) 

In equations (118) and (119) the blade aerodynamic loads are expressed in terms of 
UT, Up, and 6 . In order to use the expressions for blade aerodynamic loads in the 
blade equations of motion, UT, Up, and k must be expressed in terms of the blade 
bending and torsion deflections v, w, and $ . The blade velocity is easily expressed in 
the x, y, z coordinate system. The deformed blade coordinate transformation, which 
relates the x,y, z and x’, y’, z’ coordinate systems, is given by equation (A-4). This is 
used to express the UT and Up velocity components in terms of v, w, and $. 

The total flow velocity seen by a point on the elastic axis can be written from 
reference 12 as 

(pfnRcos$+QRA Bpc-t+ nv>t 

+(Qf3 pcw-~-~(X+ ld- l.$ .QRsin$)j 

+(S2Rh-~f~R~pc~~~$-;K- ngpcV)“k (121) 

where 

v’f = 
v cos as 

SIR 

x = 
V sin as -vi 

QR 

and the aerodynamic velocity components are shoivn in figure 8. 
The tangential and perpendicular velocity components, U and Up, are obtained 

from equation (121) using [T] from equation (A-4). To secon d order in the dependent 
variables they have the form 
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UT = uf QRv’cos$~+52x+ uf QRsinJI+t (122) 

u = 
P 

ufnRw’cosJI-uf RRv’9 cos$ 

-(ufQRsin$ + SJx)(e + ‘#‘)-;0 

+vf nRB PC 
cos$ -ORX +b+ QBpcv (123) 

It may be noted that the nonlinear terms are neglected. 
The angular velocity about the x’ axis, E , is now considered. It can be regarded as 

being composed of three parts: the first part due to the rigid-body angular velocity of 
the hub in space, the second part due to the control inputs, and the third due to the 
angular velocity associated with the elastic deformations. The total sectional pitching 
velocity can be written as (ref. 12.? 

;: = s2 (Bpc + WI+ Blcsin JI-~lscos~)+ 6 (12 4) 

It may be noted that the total geometric pitch angle, 8 , is given by 

8 = 8 +e -0 
Pt c 

lc cos $ - 8 ls sin $ (125) 

where 8 is the built-in twist angle (pretwist), 
measured #! the tip, and 8 

8 is the collective pitch angle 
and 8 are the first hart%onic cyclic pitch components. 

The built-in twist is a lineakqinear fu%tion of x and may be written as 

The induced 
from momentum 

8 pt = - et (R - X) (126) 

veloctiy, vi’ is calculated by equating the integral thrust to the thrust 
theory using the relations 

VR - 
v. = 

1 
n/77- 

(127) 
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. . . ..-... . . .._-- 

b 
‘T = 25r 

1 

npQ2R4 LW 
dxd JI (128) 

0 

where L is the steady-state value of L . 
Sub%uting equations (118) and (1 l# into equations (120) and using expressions for 

U , U , and 6, given by equations (122) to (124), the aerodynamic loads to second order 
ca% bePwritten as 

Lv q 3p ac -(fix+ pf QRsin+)B + 2(pfnRg 
PC 

cos $ 

-( ~fQRBpc~~~~-QRX) 1 @ +$ Pat -(fix 

+ pfQRsing)e +2(~fQRBpccos$-~RA) 1 
l F.lf!JRcos $v+~ L pat -(fix+ pfQRsin$) 

l (P,QR Bpc cos$ -52 RX) 8 -3cnx 

+~.~~RRsin$)~+(p~QRB~~cos$-fiRA)~ 1 (129) 
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Lw = $ p ac C -(fix+ pf QRsin$)Q BP, 1 v 

+ipac[Z(Qx+ pfORsinJI) 8 -(pfQRBpc cos $ 

-RRA)] ‘v+$pac[ -(Qx+ u,QRsin$)b-2% 1 
+$pac -(fix+ pfSlRsinJ,)2 

+t pf Q2Rcos$]+ +fpac[$(Qx 

+ ulf S2RsinJl) 1 i +$ pat 
C 

2 (nx 

+pff2Rsin$)e -(ufDRBpccosJI-“RX) 1 
l (pffARcos$) 1-1 +&pac [-(fix 

+ pfQRsin$)+$ pf n2RsinJI v 1 
+ ipac 

[ 
-i pf $2 R cos $1 5 

+ipac [ 4 uf aR Bpc c-9 -Q RX)+(pfRRsin$ 

+0x) e] (ax+ pf QRsinJ,) 

+$pac f(S2f3pc+2 c 26)(nx+ pf ORsinJI) 

+t j.lfn2Rcos$e +$ pf (130) 
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Me = - 3 P ac ($I2 [ -S + vf fi2 R cos $4) 

+2(0x+ ufDRsin$)i +(Q2x+2ufQ2Rsin$)v 

-uf s2 Rcos$3 1 
-- ’ p ac ($1’ [ ( Q 2 x+ ufS2R sin$) 

l (.Q B,, +2h+ jlf n2 R 8 cos J, 

+ F(fn2R BP, sin $ 1 (131) 

The above expressions can be rewritten in matrix form as (retaining only time- 
dependent terms) 

iFa\ = [‘(‘gt;I (z(Xt t)} + k (X, t)] {2(X, t)) + [D(x, t)] {?(x, t)} 

+ $, [e,Cx, t) J n (2 (x, t)} cos n $ 

+ n$l [c,(x,t)],{~(X’f)} cosn 9 

+n$lbs(x9tI]n (zCx,t)> sinn JI 

+~~s(x9t)]n {t(x,,,> sinn J, 

+ $fc (x)) n cm n J, + n$l { Ps bd}, sin n 9 (132) 
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where 1 I 2 is the state vector, defined by equation (11, and 

{Fa)T’ 1 0 0 0 0 0 -M4 0 0 0-Lv-Lw] (133) 

The nonzero elements of the elastic-deformation-independent aerodynamic load 
vector, P, are: 

For n = 1; 

P c6 = 

P cl0 = 

P cl1 = 

P s6 = 

P SlO = 

P sll = 

1 pacQ2Q [-2nx els+ pf QRWt+ ec)] 2 

-i pat Z1R [: -2 8pc P~QRX -(et+ eC) 13 IJ fix PC f 

+j+3pc~f mels-~s2Xelc] 

-!j p ac Q R [ -BPcpfnx+~(et+ec)pfO 

2 
- 5 n ($ 8 ls 4% + t+R) elc 1 
4 pat ($12Q II melt+ 2QBpcvf R 1 
-!jpac $JR [ ‘do -27 ~~it-d~+(e t+ e,) ufn RX 

-xnxels+-G pc f 1 B p2Q R 8 lc 1 
-3 pat SZR [ Spc “IQ+ Ai-2 P’fR 

+2(et+ ec) pfnx- cn X2 - +$I: QR) els R 

+ $2 (i) elc] 
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For n = 2; 

P c6 = nR elc) 

1 2 
P cl0 = -3pacSiR 2 [ ’ +) +R+~Bpcuf 2QR 

+$A pfQR e1s++f3pc uf szx Blc 1 
P cl1 = -4~ ac SZR 

C 
-$ (e t+ e,hf QR+ 52 )lfX els 

-5 pf n elc 1 
P s6 = S1R els) 

P SlO = -i pat L?R -+(e pf* x 81s 

: x PfQ R %cl -- 

P sll = -h pac52R 

For n = 3; 

P cl0 = -2 ’ pacQR(-i epc I.+ R els) 

P cl1 = ’ pacfiR($v:DR elc) -2 

P SlO = -4pac flRtL fi 4 p2QR elc) pc f 

P sll = -$ pacQR($Vf QR els) 
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The first seven terms in equation (132) represent the aerodynamic loads due to 
elastic deformations. The coefficients of the corresponding matrices are given in 
Appendix C. 

The aerodynamic loads as represented by equation (132) are to be included in the 
blade equations of motion. It may be recalled that the solution to these equations is 
treated as individual contributions associated with each harmonic of the excitation 
loading. Such a solution may be written in a complex form as, equation (22), 

{ 
Zn(x,t)} = Re({%n(x)} eiwt) (134) 

where 

w = nQ (n = 1, 2, 3) (135) 

In the aerodynamic loads expression (eq. (132)) the fourth to the seventh terms 
contain functions of the azimuth angle (rotational speed). Due to the existence of these 
terms, the above solution (eq. (1341 can not be applied. Instead, the state vector should 
be written as 

(2 (x, t))= R(gm (zn (X)}einnt) (136) 

In this case the resulting equations must be solved simultaneously for all harmonics. 
Even if only three harmonics are considered for the state vector (eq. (136)) obtaining 
the corresponding solution is very complicated. An approximate method is used to 
determine the aerodynamic forces by neglecting the fourth to the seventh terms in 
equation (132). These terms are of lower order than the corresponding terms in the 
blade equations of motion and thus may be neglected according to the adopted ordering 
scheme. Although the first three terms of equation (132) may also be neglected 
according to the ordering scheme, they are retained here. These aeroelastic terms will 
be the only representation of coupling between the elastic deformations and the 
aerodynamic loading. 

With the fourth to the seventh terms in equation (132) neglected the solution given 
by equation (134) can be applied. Substituting equation (134) into equation (132) yields 
the following complex notation for the nth harmonic of the aerodynamic load. 

(‘a) = CAal {‘} + { ‘} (137) 

where 

amplitude vector of the aerodynamic load 

E amplitude vector of the elastic-deformation-independent aerodynamic force 
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and 

(Pi = {pc}-i {ps) (138) 

[A,] = [B(x,w)] +iw [C(X,~)] -co2 [D(wA)] (139) 

From equation (139) and Appendix C, the nonzero elements of [ Aa ] are 

A + p ac (g)2 w 2 
a62 = 

A a63 = i p ac (t)2 (2iw 52 x) 

A a65 = 2 1. p ac ($)2 Q 2x 

A a10,2 = 
-$ipacw [ 42x( ec+ e,)+l 2 plf SIR els-2WX 1 

A a10,3 = -$pac Q2xRX 

A alO, = -i pac($ Q2x pf R elc+ Sz 2 rt;R2Bpc) 

A all,1 = -$ pact-Q2x Bpc) 

-3ipacw 
[ 

2hdec+ et)-vfQ13els + S2RX 1 
A all,2 = -i pac(-iwQx+$w2) 

A 2 
all,3 = -+ pact-S2 x ‘-i pt Q2R2+$ iwQx) 

A all,4 = - 3 pat G Q2x uf R fJlc - 3 ’ Q2+t2Bpc) 
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Aal1,5 = -$ pac(% Q2x1 

The induced velocity, v., is obtained by substituting the steady-state value of Lw 
from equation (130) into equdtions (127) and (128). The resulting equation is 

an(6 X + C,,) 
v. = 1 uftanas-X = (1401 

where 

V cosa s 
+ = T-R---- 

1 bc a, -- = 48 mRa 

(141) 

(142) 

c, = (4 + 6 i$ ec -(l + 3 u$ 8, R -6 uf els 

+ k (3 BP, + 3 pf elc) (143) 

Equation (140) is an algebraic equation in X . 

TRANSFER MATRIX METHOD 

System Equations 

The blade equations of motion are given in a matrix form by equation (23) for the 
nth harmonic of frequency w as 

(z(x))’ = [A(x)] (r(x)/ + (f-,(x)/ (144) 

The boundary conditions corresponding to a hingeless rotor blade are idealized in this 
analysis as being cantilevered at the hub (x = 0) and free at the tip (x = Rl. 
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Hub: 

Tip: 

where 

1 I Zd (x) T = 

I 1 Zf (x) T = 

(145) 

(146) 

L vwTjid (147) 

1 
tix liiy iiz vx vy vz (148) 

Equation (144) represents a set of 11 linear first-order ordinary nonhomogeneous 
differential equations. It may be noted that [A] is a complex matrix due to inclusion 
of the linear damping terms. The desired solution is obtained by the fomulation of a 
field transfer matrix which relates the state variables between any two points along the 
blade. 

Transfer Matrix 

The concept of the transfer matrix has been thoroughly discussed by Pestel and 
Leckie in reference 13. The backward transfer matrix [T(X)] is defined by 

(149) 

which relates the state vector at two stations. 
It is often possible to determine the transfer matrix by using simple statics. Such 

techniques are described in reference 13. These techniques prove satisfactory for 
simple lumped parameter or lower order uniform continuous systems, but become 
cumbersome when used for nonuniform and higher order systems because of the required 
algebraic manipulation. Murthy (ref. 9) has presented a systematic approach which 
eliminates -much of the algebra and results directly in differential equations for the 
elements of the transfer matrix. The state vector usually satisfies the differential 
equation 

Differentiating equation (149) with respect to x gives 

(150) 
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= g [T(X)] iZ(O)) 

From equation (149) it is obvious that 

~z(o)) = [T(x)]-’ (z(x)\ 

Substituting this into equation (151) the following equation can be obtained 

= $ [T(X)] [T(x)]-’ ~Z(X)) 

(151) 

(152) 

(153) 

Equating equations (150) and (153) gives 

[[A(X)] -$ [T(X)] [T(x)]-‘] (Z(x)) = (0) (154) 

Since equation (154) must be satisfied for all values of x and all values of Z it follows 
that 

[A(x)] = $ [T(x)] [T(X)]-1 

Then post multiplying both sides by [T (xl] yields 

-& [T(X)] = [A (xl] [T(x) ] (155) 

Therefore, the transfer matrix is given directly by the solution to equation (155). By 
letting x go to zero in equation (149) the initial condition of the transfer matrix 
becomes the identity matrix. 

[T(O)] = If-Id (156) 

If equation (155) is solved as a coupled set of first-order differential equations, then 
equation (156) provides a sufficient number of initial conditions. 

The transfer matrix of the blade without a pendulum can be obtained by integration 
of equation (155) together with the initial conditions of equation (156). The tension 
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coefficient, T, appearing in matrix [A]is given by 

T= “2xJR 1 1 mx dx (157) 

When a pendulum is attached to the blade the transfer matrix at any spanwise 
location is obtained as follows. Let xA be the spanwise location of the pendulum hinge: 

Case 1. 05X5X L 
A 

The transfer matrix in this case is obtained by the direct integration of equation 
(155) together with the initial conditions given by equation (156) similar to the case of 
the blade without the pendulum, but the tension coefficient is given by the following 
equation instead of the one given by equation (157). 

T= Q2JR mxldxl+Mfi2(XA+ a COS 60) (158) 
X 

Case 2. R 
XA I x rR 

Let [T ] be the transfer matrix of the blade at x = xk; 
i 

this matrix can be obtained 
from Case as described above. Recall that [ P] ( 
matrix of the pendulum. 

see eq. (89)) is the point tFnsfer 
Let CT2 (xl] be the transfer matrix of the blade from x to x. 

This matrix is obtained by the in&egration of equation (155) with the initial con % itions 
given by equation (156) from x 

A 
to x. While integrating this equation the tension 

coefficient given by equation (1 ) should be used instead of the one given by equation 
(158). By the product rule of transfer matrices, the transfer matrix of the system at 
any spanwise location for this case is given by 

[T(X)] = [T2 4 [P] [Tl] (159) 

Once the system transfer matrix is obtained, the state vector at any spanwise location 
can be determined. 

System Dynamic Response 

It has been shown how the transfer matrix can be used to solve the homogeneous 
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differential equations. An application of such a solution is to find the natural 
frequencies and mode shapes of an elastic system (ref. 14). Once they are known it is 
possible to solve the most general cases of forced undamped vibrations, whether they 
are transient or steady-state in character, either for discrete or continuous systems, 
through the normal mode approach. On the other hand the steady-state response caused 
by a harmonic excitation is more readily solved with the aid of a particular integral of 
the nonhomogeneous differential equation without making use of the normal,modes and 
natural frequencies (ref. (13)). 

The procedure adopted here for the steady-state response of forced vibrations with 
harmonic excitation is usually called the ‘extended” transfer matrix approach for 
undamped systems and the “complex extended” transfer matrix approach for damped 
systems. The procedure is valid for any linear damping since normal modes are not 
introduced. The restrictions are that the response is steady and excitations are 
harmonic. With the knowledge of the system’s response to harmonic inputs, the 
response to any arbitrary input can be computed by synthesizing the arbitrary forcing 
function from an aggregate of infinitesimal harmonic forces. 

The blade-pendulum equation of motion was given by equation (23) as 

(160) 

By definition of the transfer matrix, the solution for the homogeneous part of equation 
(160) can be written as 

The particular solution of equation (160) can be written as 

(5(x)) = $X[T(x,s)] (q’s)\ ds 

(161) 

(162) 

where [T (x,s)] is the transfer matrix of the system from s to x (in contrast to [T (x)], 
the transfer matrix from 0 to x). By the product rule of transfer matrices the following 
relation can be written 

[T(X)] = [T(x,s)] [T(s)] (163) 

From equations (162) and (163) the particular solution can be written as 

1 zp,x,) = [T(x)] ,sx [T(s)] -’ ( c(5)) ds (164) 

The complete solution of equation (160) can be obtained by adding equations (161) and 
(164). 
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IZ(x)} = [T(X)] (z(O)) + [TM] s”[T(sI]-’ {+I} ds (165) 

165) gives the amplitude vector of the simple harmonic response. The vector 
is not completely known, but it can be determined from the boundary 

of the system. 
To determine the vector z (0) , I I first rewrite equation (165) as 

where 

(167) 

1 1 Ff 
-T g 

1 -M 
4’ 

0 0 0 xv -Lwj (168) 

I: 1 s (s) q 1 1 T (s) -1 

The boundary conditions corresponding to a hingeless rotor blade are 

1 1 Zd (0) = 1 1 0 

(169) 

(170) 

(171) 

Substituting equations (167) and (170) into equation (166) yields 
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From equation (172) 

{ zf (R) } = [Td O] { zf (0)) + [Tc (R) ; Td (R)] dR [ 2 ;] { Ff (s)) ds 

(173) 
Substituting the boundary condition of equation (171) into equation (173) yields 

{ zf (O)} = - [Td (RI] -’ [Tc (RI ; Td (R)] dR 2; [ 1 [ Ff (s)] ds (174) 

Equation (172) gives the response state vector of _a hin eless rotor blade due to a 
simple harmonic load. The hub constraint reactions, ( 2 (0) P which appear in equation 
(172) can be obtained from equation (174). It may be no&d thkt the transfer matrix and 
all state variables are complex due to inclusion of the linear damping terms in the 
system equations of motion. 

The transfer matrix, by definition, is independent of the boundary conditions. 
Having determined the transfer matrix, the boundary conditions can be simply imposed 
to determine the response state vector as shown above for the case of a hingeless blade. 
So all the problems corresponding to various boundary conditions can be analyzed easily. 
Another advantage of the method is that it provides for the continuous integration of 
the equations. In the present study the Runge-Kutta procedure is utilized to solve the 
differential equations governing the elements of the transfer matrix (eq. (155)). One 
distinguishing advantage of the transfer matrix is that the hub constraint reactions are 
obtained as a direct result (eq. (174)). The extended transfer matrix approach is valid 
for any linear damping since normal modes are not considered. The number of stations 
at which the transfer matrix is determined depends only on the step size of the 
integration. The incremental step size can be selected arbitrarily and then the result 
compared with that obtained for a smaller increment. In this way an optimal value for 
the step size is obtained. 

RESULTS AND DISCUSSION 

The object of this study is to establish a comprehensive analytical design procedure 
for the installation of simple pendulums on the blades of a helicopter rotor to suppress 
the force and moment reactions at the hub during forward flight conditions. This 
procedure will correspond to a process of optimization with the ultimate object of 
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minimizing the root shear and moment. The minimization of these reactions will be 
accomplished by a systematic variation of the pendulum parameters (both geometrical 
and inertial). In this section numerical results are presented together with a discussion 
of their significance. The numerical results presented pertain to both uniform and 
nonuniform hingeless rotor blades. The properties of these blades are given in Appendix 
D. 

Simple Flapping Pendulum 

The first part of this section compares the root reactions from this study with the 
results of Murthy (ref. 15) for an undamped analysis. This comparison is made solely to 
verify the correctness of the computer program. The remainder of this section 
contains: 1) a detailed discussion of the numerical results for a Q/Rev concentrated 
load at the tip; and, 2) the results for excitation by a harmonic variation of spanwise 
airload in forward flight. 

Analysis verification. - By dropping the damping terms in the blade and pendulum 
equations of motion the case of undamped dynamic response can be recovered. The 
undamped root reactions of a uniform rotor configuration (Appendix D) are presented in 
Table 2 together with the results of reference 15. The reactions with a properly tuned 
simple pendulum are also shown in Table 2. The excitation force for all these results is 
a concentrated out-of-plane simple harmonic load at the tip of the blade with a 
frequency equal to 4/Rev. It is apparent from the data presented in Table 2 that the 
present analysis provides results which agree with the work of reference 15 for a 
uniform rotor blade without damping. The computer code has also been verified by 
duplicating published data of normal vibration modes for hingeless and articulated rotor 
blades (ref. 16). 

Concentrated load excitation. - The force vector for a concentrated out-of-plane 
load can be written as (see eq. (168)) 

{Ff)T = ~00000 - I;;,J (175) 

where P is the amplitude of the applied load. The concentrated harmonic force at the 
tip has tile following characteristics: 

Magnitude. . . . . . . . . . . . . . . . . .2224 N 

Frequency. . . . . . . . . . . . . . . . . .4/REV 

Both the uniform and nonuniform blades are considered for this particular excitation. 
The root reactions of the uniform blade with a flapping simple pendulum are 

computed. It may be noted that all state variables are complex due to inclusion of the 
linear damping terms. The results for the vertical shear amplitude at the hub are 
plotted in figure 9. The pendulum weight is 66.726 N (10% of the blade total weight). 
Damping at the pendulum hinge is neglected. The effect of this damping on pendulum 
tuning is discussed later in this section. 

The tuning of the pendulum is changed by varying the spanwise location of the 
pendulum for a fixed value of the uncoupled pendulum frequency. It may be noted from 
equation (53) that the uncoupled natural frequency of the pendulum is mainly dependent 
on (1) rotational speed of the blade, (2) spanwise location of the pendulum, and (3) its 
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TABLE 2. - CORRELATION OF UNDAMPED 
ROOT REACTIONS 

r 

Source M 
X’ 

M 
Y’ 

M 
Z’ 

V 
Y’ 

V 
Z’ 

Nm Nm Nm N N 

No Pendulum Attached 

Reference 15 -139 1536 -648 -1054 3256 

Present -146 1535 -648 -1051 3254 

With Pendulum Attacheda 

Present -23 53 -606 -973 -2.8 

a 
OP 

= 144 rad/s; xA = 1.651 m ; ‘A = 0.2032 m 
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length. The simple pendulum considered here swings in the flapping plane and hence can 
generate significant out-of-plane shear force and moment at its point of connection 
with the blade. These facts can be observed from the results of figure 9. The root 
normalized vertical shear ( the shear reaction with the pendulum attached to the blade 
divided by that value without the pendulum) is altered significantly by the pendulum. 
For instance, when the pendulum is located at 15.2% of the span, the root normalized 
vertical shear is attenuated to 2.9% for a pendulum frequency equal to 146 rad/sec 
(3.87/Rev), while it is amplified to 2579% for a pendulum frequency equal to 160 
rad/sec (4.24/Rev). The latter case shows that an improperly tuned pendulum might 
amplify the root reactions rather than attenuate them, and the system would be better 
off without the pendulum. 

From the results of figure 9, it can be observed that the pendulum of frequency 146 
rad/sec (3.87/Rev) located at 18% of the span is a proper design because it attenuates 
the hub vertical shear to 1.3%. The out-of-plane moment at the hub is reduced to 
14.2%. This choice of pendulum also attenuates the in-plane force and moment at the 
hub to 4.2% and 22.8%, respectively. 

The effect of pendulum mass on the vertical reaction is illustrated in figure 10 as a 
function of spanwise location. The results are for a simple flapping pendulum of 
frequency 146 rad/sec. It can be observed from these results that if the weight of the 
pendulum is 66.726 N (at x = 18% span) then the normalized vertical shear at the hub 
is 1.3%. If the weight of #ie pendulum is reduced by two thirds (located at 18% span) 
then the normalized vertical shear at the hub is 39.3%. This variation of the pendulum 
weight will be referred to as the weight ratio, where in this instance the weight ratio is 
33%. This result indicates that even though the uncoupled natural frequency of the 
pendulum is independent of the mass of the pendulum, a proper choice of the mass is 
also required to generate an optimum force to attenuate the root reactions. 

It can be observed from figure 9 that the minimum normalized vertical shear for 
any pendulum frequency occurs when the pendulum is located near 18% of the span. 
These values are replotted for different uncoupled pendulum frequencies in figure 11. 
Comparison of the hub vertical shear with pendulum absorber to the hub shear with no 
absorber shows the pendulum absorber to be effective in reducing hub out-of-plane 
reaction for tunings between 3.82 and 4.00/Rev. It can be recalled that the optimum 
tuning is 3.87/Rev. The steep gradient of the hub shear with pendulum tunings beyond 
optimum indicates decreasing effectiveness of the pendulum absorber and for tunings 
above 4/Rev the pendulum absorber becomes detrimental. Figure 11 demonstrates that 
in the case of an off-tuned pendulum, it is apparent that the result can be either a 
slight-to-moderate degradation in pendulum absorber effectiveness or a drastic increase 
in hub reaction depending upon the direction of tuning variation from the optimum 
pendulum natural frequency. 

Similar results have been obtained in reference 4. In this reference a semi- 
empirical analysis, using in-flight measured flap bending moment data, was developed to 
study the pendulum effectiveness in reducing 4/Rev blade root vertical shear. The 
Boeing Vertol 347 aircraft was used for the flight test. It is a tandem-rotor helicopter 
with fully articulated 4 bladed rotors. The vertical 4/Rev pendulum absorbers were 
installed on all blades of both rotors at 16% blade radius. Comparison of the predicted 
hub motion with the pendulum absorber showed that the pendulum absorber is effective 
for tunings between 3.4 and 4.0/Rev. Test results indicated that a 3.95/Rev is an 
optimum tuning. For this optimum tuning the vertical hub shears were reduced by 80 to 
90% on both forward and aft rotors. However, the vibratory blade root chordwise 
bending was increased by 25% with the pendulum installed. 

The elastic deflections and structural load reactions for the present uniform blade 
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corresponding to the optimum flapping pendulum (3.87/Rev at 18%) are shown in figure 
12 together with values obtained without the pendulum. The chordwise and flapwise 
deflections are normalized with respect to the chord (c=0.7m). It may be recalled that 
all the deflections snd forcgs are complex. The phase angles for the deflections are 
found to be either 0 or 180 as presented in &igure 12.0 However, the phase angles for 
the moments and forces are not exactly 0 or 180 at a few blade stations, and 
therefore it is appropriate to plot only the magnitude of these forces and moments. 

It can be observed from figure 12 that the pendulum causes a spanwise 
redistribution of the structural loads such that the hub reactions are attenuated. Figure 
12 shows that the optimum pendulum decreases the loads inboard of the pendulum and 
increases the loads outboard of the pendulum. It can also be observed that the maxima 
of the deflections, twisting moment, and vertical shear are higher than the 
corresponding quantities without the pendulum. This is the penalty one must pay for 
achieving the drastic reductions in the root reactions. The vertical shear ‘is 
characterized by a large change at the pendulum attachment point due to the vertical 
inertial reaction of the flapping pendulum mass. This vertical reaction, which is 
imposed at the pendulum attachment point, is the basis of the blade-mounted flapping 
pendulum concept which has the purpose of attenuating the root force and 
moment reactions. 

In eneral, a properly tuned pendulum can attenuate the vibratory loads in two 
ways: B 1) by eliminating the resonant responses of the blade by displacing the initial 
natural frequencies that are in the vicinity of the excitation frequency, and (2) by 
generating appropriate forces at its attachment point with the blade. These forces 
redistribute the loads on the blade so that the root forces are attenuated as discussed 
above. 

Figure 13 shows the hub vertical shear for pendulum tuning of the nonuniform 
blade. The blade rotor speed and precone angle are equal to 289 rpm and 0.1 rad, 
respectively. The pendulum weight is 133.452 N (13.8% of the blade total weight). The 
results indicate that a pendulum with uncoupled natural frequency of 3.85/Rev located 
at 22% of the span is a proper design because it attenuates the hub vertical shear to 
2.2% and the out-of-plane moment to 3.4%. This choice of pendulum attenuates the 
root in-plane force to 47.6%. However the root in-plane moment is amplified by 75%. 
This adverse effect can be reduced by offsetting the pendulum hinge ( n A) from the 
elastic axis. The effect of the pendulum hinge offset is discussed later in this section. 

For the optimum pendulum (w = 3.85/Rev and xA 
computed for different values of he pendulum mass. 

= 22% span) the root forces are 
The results are shown in figure 

14. It can be observed that a 50% weight ratio (66.72 N) is an optimum choice. For this 
weight the normalized vertical shear at the hub is practically zero as compared to 2.2% 
with a pendulum of weight 133.452 N. This demonstrates, once again, that a proper 
choice of pendulum mass is required to minimize the root forces. 

In the above analysis the damping at the pendulum hinge is neglected. However, it 
is necessary to study the effect of the pendulum damping on the root reactions once the 
optimum pendulum tuning is established. The hub shears and moments are computed for 
different damping ratios, and these results are presented in figure 15. It can be 
observed from these results that damping of the pendulum due to friction in the pivot 
bearing has a very small effect on the hub reactions. 

Once the optimum tuning configuration and mass effectiveness are established, a 
parametric study is conducted. The parameters to be varied include prepitch, pretwist, 
precone and pendulum hinge offsets. The parametric survey is conducted for the 
nonuniform blade with the optimum tuned pendulum ( w p = 3.85/Rev and xA = 22% 
span). The pendulum mass is 133.452 N for this study. 
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Figure 16 shows the effect of root collectiveg itch (prepitch) on the hub reactions. 
The pretwist angle for these results is equal to -9 . The prepitch has a small effect on 
the hub vertical shear. It significantly affects the hub in-plane force and moment, 
which are both increased by increasing the root collective pitch. The out-of-plane 
moment is affected moderately by changing the collective pitch. The effect of 
collective pitch on the twisting moment (not shown in figure 16) is negligible. 

The effect of the built-in twist angle (pretwist) on the hub reactions of the blade- 
mounted flapping pendulum is shown in figure 17. 
results is equal to 13’. 

The root collective pitch for these 
Figure 17 shows that the pretwist has a small effect on the hub 

vertical shear. Unlike the effect of the collective pitch, the pretwist has a significant 
effect on the root out-of-plane moment. However, for typical rotor blades (negative 
pretwist) the root out-of-plane moment is still attenuated to less than 10%. It can be 
observed from figure 17 that the in-plane force and moment are both increased by 
decreasing the blade pretwist. The pretwist has negligible effect on the twisting 
moment. It can be concluded that the flapping pendulum effectiveness in attenuating 
the root out-of-plane moment, and the in-plane force and moment is reduced by 
decreasing the blade pretwist. 

The root reactions of the blade are computed for various precone angles, and these 
results are presented in figure 18. It can be observed that the blade precone has no 
significant influence on the hub reactions. Thus, the flapping pendulum effectiveness in 
attenuating the blade root reactions is not affected by changing the precone angle. 

The results from varying the pendulum hinge chordwise offset, 
figure 19. 

n A, are shown in 
It may be recalled that the optimum flapping pendulum is tuned with its 

hinge located at the shear center of the blade cross section ( n 
4 

= 0, cA = 0). It can be 
argued that this is an impractical location since the shearcen er is usually inside the 
airfoil envelope. The pendulum chordwise hinge offset has a small effect on both the 
root out-of-plane force and moment as shown in figure 19. Both the in-plane force and 
moment are decreased by increasing the chordwise offset. The effect of chordwise 
offset on twisting moment at the hub is negligible. 

Figure 20 shows the root forces for different values of the pendulum hinge vertical 
offset, cA. It can be concluded from figure 20 that the vertical offset, 5 
slight effect on the hub reactions. 4’ 

has only a 
Although not illustrated in figure 20 I s effect on 

twisting moment is negligible. 
Aerodynamic load excitation. - The dynamic excitation of the rotor blade is 

provided by a quasi-steady representation of the spanwise airload distribution associated 
with the cyclic pitch environment of forward flight. As previously discussed the 
aerodynamic loads induced by the elastic deformations are also included. The 
aerodynamic load distributions consist of lift, drag, and pitching moment. Values of the 
aerodynamic parameters used to calculate the airloads are presented in Table 3. 

As previously discussed the unsteady aerodynamic forces which occur in forward 
flight are due to time dependent variations in velocity, angle of attack, and elastic 
deflections encountered by the rotating blade. The quasi-steady representation provides 
l/Rev, Z/Rev, and 3/Rev excitation airloads. The amplitude of the airloads decreases 
as the harmonic order increases. For each of the three harmonics, the amplitude of the 
vertical force is much larger than the amplitude of the in-plane force. 

For airloads which are identical on each rotor blade, the only loads and moments 
which the blades may transmit to the rotor hub are those which are integral multiples 
(N) of the number of blades (ref. 17). The N/Rev rotor hub loads are the greatest 
contributors to helicopter vibration. The source of N/Rev hub loads are N-l, N, N+l 
rotor blade airload harmonics. Therefore one solution for reducing N/Rev vibration is 
to cancel or eliminate these harmonics of blade loading. As discussed above, the quasi- 
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TABLE 3. - VALUES OF AERODYNAMIC PARAMETERS FOR THE 
NONUNIFORM BLADE IN FORWARD FLIGHT 

Advance ratio, u f .............. 0.3 

Shaft angle, a,, deg .............. -5 

Cosine cyclic pitch coefficient, 8 ,c, deg ........ -1.5 

Sine cyclic pitch coefficient, els, deg ......... 3.0 

Collective pitch, e,, deg ............. 13 

Pretwist, 8 Pt, deg .............. -9 

Airfoil lift-curve slope, a, per rad .......... 28 

Profile drag coefficient, cd0 ............ 0.01 

Precone angle, B pc, rad ............. 0.1 

Blade rotational speed, n , rpm ........... 289 
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steady representation of the airloads contains only three harmonics. In the present 
analysis, the effectiveness of the flapping pendulum in reducing the blade root forces 
due to 2/Rev and 3/Rev airloads is discussed. Throughout the following, unless stated 
otherwise, all numerical results pertain to the nonuniform blade. 

The root reactions of the nonuniform blade with a flapping pendulum are computed 
for a 2/Rev spanwise airload distribution. The results for the vertical shear at the hub 
are plotted in figure 21. The pendulum weight is 133.452 N. From the hub reactions it 
is observed that the pendulum of uncoupled natural frequency 2.02/Rev located at 22% 
of the span is a proper design because it attenuates the hub vertical shear to 22% and 
the out-of-plane moment to 31%. This choice of pendulum attenuates the in-plane 
moment by only 4% and amplifies the in-plane force by 66%. However for the 2/Rev 
airload the in-plane hub force is small compared to the hub vertical shear. 

For the optimum pendulum tuning ( w = 2.02/Rev and x = 22% span) the root 
reactions are computed for different value.?of the pendulum m&s and the results are 
presented in figure 22. It can be observed that a 94.53 N pendulum weight (0.71 weight 
ratio) is a proper choice because it attenuates the hub shear to 2.9 %. It also attenuates 
the hub out-of-plane moment to 17%. 

To establish the importance of representing the excitation as a distributed loading 
the responses due to the distributed airload are compared with corresponding responses 
associated with a concentrated :rarmonic force applied at the tip with the same 
frequency. Figure 23 shows the results for a 2/Rev concentrated out-of-plane force at 
the tip. It can be noticed from figure 23 that the flapping pendulum effect on the hub 
vertical shear is similar to the results obtained for the 2/Rev spanwise airload 
distribution (fig. 21). For specific values of the pendulum frequency and spanwise 
location, the pendulum attenuates or amplifies the root vertical shear the same way for 
both the distributed airload and the concentrated load. It is observed that an optimum 
tuning occurs at 22% spanwise location with pendulum frequency equal to 2.02/Rev. 
This optimum tuning attenuates the vertical shear and the out-of-plane moment to 17 
and 38%, respectively. It amplifies the in-plane force by 63%. It may be recalled that 
the optimum pendulum for the 2/Rev distributed airloads also occurs at xA = 22% span, 

wP 
= 2.02/Rev, and W = 94.53 N. 
The pendulum mass optimization for the 2/Rev concentrated load is shown in figure 

24. It can be observed that a 100.09 N pendulum weight (0.75 weight ratio) is a proper 
choice because it attenuates the hub shear to 8%. It also attenuates the root out-of- 
plane moment to 26%. 

For the 2/Rev concentrated load at the tip, discussed above, the elastic- 
aerodynamic coupling is not included. However, it is important to study the effect of 
these terms when the blade is excited by a concentrated load. Figure 25 shows the. 
results for a 2/Rev concentrated load at the tip with the aerodynamic coupling terms 
included, as well as the results without these terms (W = 133.45 NJ. It can be noted 
from figure 25 that for both cases the root vertical shear has the same characteristics. 
However, the amount of attenuation is different. Figure 25 shows that, for the case 
with aerodynamic coupling the optimum tuning occurs at xA = 26% span and 

3 
= 2.02/Rev. This choice of pendulum attenuates the root out-of-plane shear and 

m ment to 38% and 84%, respectively. The results of varying the pendulum mass 
indicate that the reaction attenuation varies only by 1.0%. The results also show that a 
133.45 N is a proper choice. Comparing the pendulum tuning for the 2/Rev distributed 
airloads, the 2/Rev concentrated load, and the 2/Rev concentrated load with 
aerodynamic coupling, it can be concluded that a pendulum tuned for a concentrated 
simple harmonic load acting at the blade tip can serve the purpose of a distributed 
simple harmonic loading at the same frequency as far as the pendulum tuning and mass 
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optimization is concerned. However, it is necessary to utilize appropriate distributed 
airloads to accurately determine the attenuation of the root reactions. 

Figure 26 shows the effect of pendulum tuning on the root vertical shear for 3/Rev 
spanwise airload distribution. The results of figure 26 indicate that a flapping pendulum 
of frequency 3. IO/Rev located at 26% of the span is an optimum tuning. This choice of 
pendulum attenuates the root vertical shear and the out-of-plane moment to 4.2 and 
26.8%, respectively. It attenuates the root in-plane moment only to 97%. However, the 
in-plane force at the hub is amplified by 44%. This adverse effect is the penalty being 
paid for achieving the drastic reductions in the root out-of-plane force and moment. 

The root reactions are computed for various masses ‘of the optimum pendulum. 
Results for the vertical shear are presented in figure 27. These data show that a 155.69 
N pendulum weight (1.17 weight ratio) is a proper choice. For this weight the vertical 
shear and out-of-plane moment are attenuated to 3.3 and 25.2%, respectively. 

The above results for a simple flapping pendulum on the nonuniform blade are 
summarized in Table 4. 

Simple Lead-Lag Pendulum 

As discussed in the previous section, the simple flapping pendulum can be tuned to 
achieve significant reductions in the root out-of-plane forces. To significantly 
attenuate the in-plane forces a simple lead-lag pendulum is needed. In this section, the 
effect of mounting a lead-lag pendulum on a rotor blade is discussed. The excitation 
loads to be considered are 4/Rev concentrated load at the blade tip and 2/Rev and 
3/Rev spanwise distributed airloads. Throughout the following all numerical results 
pertain to the nonuniform blade. 

Concentrated load excitation. - The root reactions of the nonuniform blade with a 
simple lead-lag pendulum are computed. The results for the in-plane force amplitude at 
the hub are plotted in figure 28. The study of the effect of the pendulum tuning on the 
root in-plane reaction is of prime importance since the lead-lag pendulum attenuates 
mainly the in-plane forces. The pendulum weight is equal to 133.452 N. From the 
results it can be observed that the pendulum of uncoupled natural frequency 3.85/Rev 
located at 26% of the span is a proper design because it attenuates the hub in-plane 
force to 5% and the in-plane moment to 44.6%. This choice of pendulum also 
attenuates the root vertical shear and the out-of-plane moment to 20.6 and 16.8%, 
respectively. In principle, it is feasible to design a lead-lag simple pendulum to achieve 
significant reductions in the hub in-plane force and moment w’ithout producing an 
adverse effect on the out-of-plane forces. 

For the optimum lead-lag pendulum (w = 3.85/Rev and xA = 26% span) the root 
forces are computed for different values of &e pendulum mass. The results are shown 
in figure 29. It can be observed from figure 29 that if the pendulum weight ratio is 
reduced from 1.0 to 0.3, then the normalized in-plane force at the hub increases from 
5% to 39%. This result indicates that even though the uncoupled natural frequency of 
the lead-lag pendulum is independent of the mass of the pendulum, a proper choice of 
the mass is required to minimize the root forces. It may be recalled that this 
conclusion was also observed for the simple flapping pendulum. 

It is appropriate, at this stage, to compare the results for the optimum tuned 
flapping and lead-lag pendulums. Shown in Table 5 are the optimum pendulum 
parameters for both the flap and lead-lag pendulum configurations. Also shown in this 
table are the normalized root forces of the nonuniform blade due to a 4/Rev 
concentrated load at the tip. From Table 5 it can be observed that for both the flap and 
lead-lag pendulums the uncoupled frequencies are the same. Also the uncoupled 
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TABLE 4. - OPTIMUM FLAPPING PENDULUMS 

FOR NONUNIFORM BLADE 

Type 

of 

Excitation 

Natural Spanwise 
frequency, location, 

lJJ P’ XA’ 

per Rev percent span 

Pendulum 
weight, 

w, 

N(lb) 

Normalized 
out-of -plane 

shear, 

V 
Z’ 

percent 

Normalized 
out-of-plane 

moment, 

M 
Y’ 

percent 

Z/Rev Concentrated 
no aeroelastic terms 

Z/Rev Concentrated 
with aeroelastic terms 

Z/Rev Distributed 
with aeroelastic terms 

3/Rev Distributed 
with aeroelastic terms 

4/Rev Concentrated 
no aeroelastic terms 

2.02 22 100.09 8.0 26.0 
(22.50) 

2.02 26 133.45 38.0 84.0 
(30.00) ~ 

2.02 22 94.53 ’ 2.9 17.0 
(21.25) 

3.10 26 155.69 3.3 25.2 
(35.00) 

3.85 22 66.72 0.2 5.8 
(15.00) 

A 



TABLE 5. - ROOT REACTIONS FOR OPTIMUM FLAP AND 
LEAD - LAG PENDULUMS AT C/REV 

- 

Normalized root reaction, 

percent 

MX 

M 
Y 

MZ 

V 
Y 

vZ 

Flapping 

penduluma 

139.0 

5.8 

172.0 

43.6 

0.2 

Lead - lag 

pendulumb 

85.0 

16.8 

44.6 

5.0 

20.6 

a 
wP 

= 3.85/Rev ; xA = 22% span ; W = 66.72 N 

b 
“P 

= 3.85/Rev ; xA = 26% span ; W = 133.45 N 
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frequency (3.85/Rev) is in the vicinity of the external load frequency (4/Rev). It may be 
concluded that, in general, the optimum pendulum frequency depends mainly on the 
excitation frequency. This observation is due to the fact that the optimum tuned 
pendulum attenuates the hub reactions by eliminating the resonant responses of the 
blade (in addition to generating an appropriate reaction force at the hinge). The 
optimum pendulum eliminates these resonant responses by displacing the natural 
frequencies that are in the vicinity of the excitation frequency, and since the pendulum 
is more effective in altering the blade frequencies adjacent to the uncoupled pendulum 
frequency (ref. 71, then the uncoupled pendulum frequency must be close to the 
excitation frequency. As expected, the flapping pendulum significantly attenuates the 
hub vertical shear, whereas the lead-lag pendulum reduces the hub in-plane force 
drastically as shown in Table 5. Finally, it can be observed from Table 5 that for this 
particular blade the flapping pendulum produces an adverse effect on the twisting and 
in-plane moments, whereas the lead-lag pendulum attenuates the twisting and out-of- 
plane moments. 

The spanwise variations of deflections and forces for the nonuniform blade 
corresponding to the optimum lead-lag pendulum, which is located at 26% span, are 
shown in figure 30 together with the values obtained without the pendulum. The lead- 
lag and flapwise deflections are normalized with respect to the chord (c = 0.53 m). Only 
the magnitude of the forces and moments are plotted. It can be observed from figure 
30 that the lead-lag pendulum redistributes the structural loads of the blade such that 
the hub forces are attenuated. The pendulum decreases the loads inboard of its location 
and increases the loads outboard. Figure 30 shows that the lead-lag deflection of the 
blade-pendulum system is significantly reduced. Also, it can be observed that the in- 
plane force, V , is characterized by a large change at the lead-lag pendulum attachment 
point due to &e intertial reaction of the lead-lag pendulum mass. It may be recalled 
that the flapping pendulum produces a large change in the vertical shear. These 
reactions at the attachment point redistribute the loads on the blades in such a way that 
only a small portion of the shears and moments are transmitted to the hub. 

A parametric study is conducted for the optimum lead-lag pendulum 
(W = 3.85/Rev and x = 26% span). The parameters varied include prepitch, pretwist, 
p&one, and pendulum inge offsets. 9-i 

Figure 31 shows the effect of the root collective pi&ch (prepitch) on the hub 
reactions. The pretwist angle for these results is equal to -9 . It can be observed from 
figure 31 that increasing the prepitch decreases the hub in-plane force to a minimum 
value after which it increases. The in-plane hub moment is increased by increasing the 
prepitch (in the normal range). Figure 31 shows that the prepitch has a negligible effect 
on both the out-of-plane shear and moment at the hub. 

The effect of pretwist on the hub reactJons is shown’ in figure 32. The root 
collective pitch for these results is equal to 13 . Figure 32 shows that both the hub in- 
plane force and moment are increased by decreasing the blade pretwist. Thus, the lead- 
lag pendulum effectiveness in attenuating the root in-plane force and moment is 
reduced by decreasing the blade pretwist. It can be observed from figure 32 that the 
effect of the pretwist on both the out-of-plane force and moment at the hub is small. 

The root reactions as a function of the blade precone angle are computed, and the 
results are presented in figure 33. It can be observed that the precone angle has no 
significant influence on the hub reactions. It may be recalled that the same conclusion 
was observed for the flapping pendulum. 

The results from varying the lead-lag pendulum hinge chordwise offset (n ) are 
shown in figure 34. It may be noted that the optimum lead-lag pendulum is tune 8 with 
its hinge located at the shear center of the blade cross section ( n A = 0, CA = 0). It can 
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be observed from figure 34 that the pendulum hinge chordwise offset has only a slight 
effect on both the hub in-plane force and moment. However, both the hub out-of-plane 
force and moment are decreased sigificantly to practically zero, after which they are 
increased, by increasing the chordwise offset. 

Figure 35 shows the root reactions for different values of the lead-lag pendulum 
hinge vertical offset, CA’ This offset has a small effect on the root in-plane moment. 
However, the in-plane force at the hub is increased by increasing the vertical offset as 
shown in figure 35. Also, both the root out-of-plane force and moment are increased by 
increasing the lead-lag pendulum hinge offset, c A. It can also be noted that both the 
chordwise and vertical offsets have a negligible effect on the hub twisting moment 
reaction. 

Aerodynamic load excitation. - The root reactions of the nonuniform blade with a 
lead-lag pendulum are computed for a 3/Rev spanwise airload distribution. The results 
for the root in-plane force are shown in figure 36. It can be observed from figure 36 
that for this particular load the lead-lag pendulum attenuates the root in-plane force 
only by a small amount. However, the root in-plane force is small for all three 
harmonics of the spanwise airload distribution. The lead-lag pendulum of uncoupled 
frequency 3.10/Rev located at 19% of the span is a proper choice because it attenuates 
the hub in-plane force to 65%. However, it amplifies the other root reactions by 5 to 
25%. 

The effect of lead-lag pendulum tuning on the root in-plane force for a 2/Rev 
spanwise airload distribution and a Z/Rev concentrated out-of-plane load is shown in 
figures 37 and 38. It can be observed from these figures that for specific values of the 
pendulum frequency and spanwise location, the pendulum attenuates or amplifies the 
root in-plane force the same way for both the distributed airload and the concentrated 
load. The pendulum of frequency 2.01/Rev located at 9% span attenuates the root in- 
plane force to 60% for the distributed airload and 42% for the concentrated load at the 
tip. As concluded earlier, for the flapping pendulum, a pendulum can be tuned for a 
concentrated simple harmonic load at the tip as well as by a distributed simple 
harmonic loading of the same frequency. 

CONCLUDING REMARKS 

Comprehensive analytical design procedures for the installation of simple 
pendulums on the blades of a helicopter rotor to suppress the root reactions were 
developed. To achieve this goal, a frequency response analysis of typical rotor blades 
excited by a harmonic variation of spanwise airload distributions as well as a 
concentrated load at the tip was conducted. A single nonuniform rotor blade with 
hingeless hub restraint undergoing coupled flapwise bending, chordwise bending, and 
torsional vibrations was considered. The equations of motion of both flap and lead-lag 
pendulums were derived. Expressions for the aerodynamic loads associated with the 
elastic deformations and the cyclic pitch environment of forward flight were presented. 
The transfer matrix method was used to determine the optimum pendulum tuning and 
mass to suppress the hub reactions. Lastly, the effects of various structural dynamic 
properties of the blade on the optimum pendulum configuration were established. 

The results of the study indicate that the following conclusions can be drawn. 
(1) In general, it is feasible to design a simple pendulum to suppress the vibratory 

loads at the hub of a rotor blade. Further: 
(i) A properly designed flapping plane simple pendulum attenuates the root out- 

of-plane force and moment significantly. In principle, the reductions in the root out-of- 
plane reactions can be achieved without producing adverse effects on the root in-plane 
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forces. However, in some of the cases investigated, the hub in-plane forces are 
amplified with the flapping pendulum. This is a design penalty which results from 
reducing the out-f-plane reactions. 

(ii) An optimum lead-lag pendulum design attenuates the root in-plane force and 
moment. 

(iii) For the cases investigated, the flapping plane simple pendulum is more 
effective in attenuating the root out-of-plane reactions than the lead-lag pendulum in 
suppressing the in-plane forces at the hub. 

(2) A properly tuned pendulum can attenuate the vibratory loads in two ways: (1) 
by eliminating the resonant responses of the blade by displacing the initial frequencies 
that are in the vicinity of the excitation frequency, and (2) by generating appropriate 
forces at its attachment point with the blade. These forces redistribute the loads on 
the blade so that only a small portion of the shears and moments are transmitted to the 
hub. 

(3) For optimum tuning, the parameters to be determined are the pendulum 
uncoupled natural frequency, the pendulum spanwise location, and its mass. Further: 

(i) The pendulum uncoupled natural frequency is a function of the (a) rotational 
speed of the blade, (b) spanwise location of the pendulum, (c) its length, (d) steady-state 
deflection of the pendulum, and (e) blade pitch angle at the pendulum hinge location. 

(ii) The optimum pendulum frequency is in the vicinity of the excitation 
frequency. In general, both the flapping plane pendulum and the lead-lag pendulum have 
the same optimum frequency for the same excitation frequency. In the case of an off- 
tuned pendulum the results range from a slight-to-moderate degradation in pendulum 
absorber effectiveness to a drastic increase in hub vibration. 

(iii) The uncoupled natural frequency of the pendulum is independent of the 
mass of the pendulum, and a proper choice of the mass is required to generate an 
optimum force to minimize the root reactions. 

(4) A pendulum can be tuned and its optimum mass determined by excitation with a 
concentrated simple harmonic load at the tip. However, it is necessary to utilize 
appropriate distributed airloads to accurately determine the attenuation of the root 
reactions. 

(5) Damping at the pendulum hinge has a very small effect on the hub reactions 
once the optimum pendulum tuning is established. 

(6) The parametric study for a 4/Rev flapping plane pendulum and a 4/Rev lead-lag 
pendulum indicates: 

(i) Blade precone has no significant effect on the hub reactions for both types of 
pendulum. 

(ii) The effect of collective pitch on the hub vertical shear is small, but has an 
appreciable effect on the hub out-of-plane moment for a flapping plane pendulum. For 
the lead-lag pendulum the collective pitch has a negligible effect on both the hub out- 
of-plane force and moment. Increasing the collective pitch, the hub in-plane force and 
moment are significantly raised in the case of the flapping pendulum, whereas they are 
lowered to a minimum value after which they are increased in the case of a lead-lag 
pendulum. 

(iii) The pendulum effectiveness in attenuating the hub in-plane force and 
moment is reduced by decreasing the blade pretwist for both types of pendulum. In the 
case of the flapping pendulum, pretwist has a significant effect on the hub out-of-plane 
moment. 

(iv) The pendulum hinge chordwise offset has a small effect .on the hub out-of- 
plane reactions in the case of a flapping plane pendulum. Also, for this type of 
pendulum the hub in-plane reactions are slightly decreased by increasing the chordwise 

70 



offset. In the case of a lead-lag pendulum, the hinge chordwise offset has only a slight 
effect on the root in-plane reactions, whereas the out-of-plane forces are significantly 
decreased by increasing the chordwise offset. 

(v) The pendulum hinge offset normal to the chord has only a slight effect on 
the hub reactions for the flapping plane pendulum. In the case of a lead-lag pendulum, 
the hub in-plane force and both the out-of-plane force and moment are increased by 
increasing the hinge offset. But the hinge offset has only a small effect on the hub in- 
plane moment. 

(vi) For both the flapping and lead-lag pendulum configurations the pendulum 
hinge offset in both the chordwise and normal directions had a negligible effect on the 
twisting moment reaction at the hub. 
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APPENDIX A 

COORDINATE SYSTEMS AND TRANSFORMATIONS 

Several coordinate systems are used in deriving the blade and pendulum equations 
of motion. Those which are common to both the dynamic and aerodynamic aspects of 
the derivation are shown in figures A-l 
(fig. A-l) and associated unit vectors r, 

A-2. The orthogonal axes system X, Y, Z 
are fixed in an inertial frame @. It is 

assumed, that the rotor hub has neither translational nor angular motion. 
2 are fixed in a reference frame @ which rotates with respect to 

%3& ?ngular velocity S2k. Point 0, which is common to both the inertial and 
rotating frames, is located at the root of the beam. The x axis, which lies along the 
elastic axis of the undeformed beam, is inclined to the plane of rotation (and to the x 
axis) by the Rrecone angle 0 
vectors t, f, k, therefore, 

The orthogonal axes x, y, z and the corresponding uniq 
are’&0 fixed in a. Beam bending deformations shown in 

figure A-2+f y + 8 = 0 are described by the displacements of the elastic axis u, v, w 
parallel to I, J, k respectively. 

frame 
transformation between the X, Y, 2 coordinates of the inertial reference 
and the xp, y, 2 coordinates of the rotating reference frame,@, is given by 

[ 

X 

Y 

2 [ 

cos n t -sin SZt 0 

= sin Q t cos iIt 0 

0 0 1 I[ xP 
Y 

z 

(A-1) 

Rotation of the x , y, 2 coordinate system by the precone angle 
yields the x, y, z endeformed coordinate system. 

B about the y axis 
These two systemsp&e related by the 

following transformation. 

xP 

I 1 i 
cos f3 0 

PC 
-sin 6 

PC x 

Y = 0 1 0 Y z sin g 
PC 

0 cos $ II PC z 

(A-2 1 

For small values of the precone angle equation (A-2) can be approximated as 

m-3 1 

The relationship between the deformed x’, y’, z’ coordinates and the undeformed x, 
y, z coordinates illustrated in figure A-2 has been developed in referznse 10. $ 
transformation matrix, [ T ] , 
1”; k, can be defined as 

which relates their respective unit vectors it, J’,% and I, 
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[i]= [TIT [i] (A- 4) 

where the transformation matrix to first order (second and higher order terms are 
discarded) is given by 

1 V’ W’ 

b’l = -~~cos(e+~)-w’sin(6+~) cos 03 + $1 sin (0 +I$ 1 

v’ sin (0 + $1 -w’ cos (0 + 9) -sin (0 + $I 1 cos (e + I$) I 
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Figure A- 1. - Undeformed coordinate system. 

74 



.z,k 

Figure A-2. - Blade elastic displacements. 
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APPENDIX B 

ACCELERATION COMPONENTS 

The purpose of this appendix is to formulate the components of absolute 
acceleration as measured in the deformed coordinate system for a general point 
(xl, yl, z,) in the undeformed system. It is desired to use the deformed coordinate 
system since it is easier to formulate the pendulum equilibrium equations in this system. 
These acceleration components are to be described in terms of section coordinates and 
the elastic blade displacements and rotations to the first order. 

A position vector in the inertial reference system can be written as 

-P 
r = xl + YS + ZR 

and the corresponding acceleration components are 

aX = Ii ; ay - i; ; aZ = 2 (B-2) 

The components of acceleration in the rotating, nonpreconed system can be obtained 
from the component transformations in equation (A-l) as 

a = 
xP 

ii cos $2 t + ;i sin 52 t 

aY = 
‘i cos nt - k sin Sit (B-3) 

aZ = 2 

Substitution of equation (B-3) into equation (A-3) yields the acceleration components in 
the undeformed system which is rotating at a small precone angle as illustrated in 
figure A-l. These components become 

. . 

a = 
X 

x cos n t + ? sin Rt + ‘i $ 
PC 

aY 
= ;j cos nt - ‘i sin 52 t 

1 

(j-4) 

a 
Z 

= 2 - (ices SZt + i sin S2t) BP, 

The position vector of equation (B-l) can be written for a general point (x , y , 
z,) in the undeformed system by successive applications of equations (A-l) and (A-$ ak 

+ 
r = (Xl cos Qt -yl sin $2 t -zl B pccos nt>t 

+(x1 sin Qt +ylcos SZt -zl g pc sin 51 t) S 

+(x 1 Bpc + 5)k (B-5) 
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The second time derivative of the components of equation (B-5) are 

;; = Ycl cos Q t :$I sin Sz t -Zl B 
PC 

cos nt (B- 6) 

-2Qklsin at -2 fly, cos fit +2Ril f3,, sinfit 

- Q2x1 cosG!t + a2 yl sinfit + Q2 z 1 Bpc cos n t 

+ = k, sin fit + ji, cos 52 t -‘il B sin Qt 
PC (B-7) 

+2 n il cos Sl t -2 Sly1 sin SI t -2 Sa Z, B 
PC 

cos fit 

- Q2xlsin Rt -Q2y1 co.sRt + n2z B 
1 PC 

sin R t 

2 = ;; . . 
1 Bpc + =1 

Substituting these derivatives into the acceleration components of equation (B-4) and 
neglecting second degree terms in the precone angle yields 

a = ii -2 
X 1 52 9, -n2x1 

2 + 52 z1 8pc 

aY = 
y, +2 a;, -251 i f3 

1 PC -Q2 Yl (B-9) 

a = 
Z 

5, +2 52 ,I Bpc + 52 2 
xI Bpc 

/ 
In the .deformed body, the coordinates 

undeformed coordinate system can be expressed 
xel, y l, zI of the general point in the 
m terms of the elastic deflections u, v, 

w, $ and the section coordinates 5, n ,< (same as x’, y’, z’) with the aid of equation (A- 
4) as 

These coordinates become 

x1 = x + u +5-v’ nc0s(e +$1-s sin(8 + 9) 
[ 1 

-WI q sin (0 + 9) + 5 code +o I] 

(B-10) 

(B-11) 
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y1 = v + VI 5 + q code + I$) -5 sin(8 +f$) (B-12) 

z1 = w + w’t+ nsin(8 +$I) +ccos(8 + 4) (B-13) 

When these coordinates and their time derivatives are substituted into equation (B-9) 
the acceleration components to first order become 

a 
X 

= f’-251v -n2(x+5) 

+2 Qi; sin(8 ++) -252;1 cost8 + $1 (B-14) 

aY 
= i + 251i -si2 v 

+( fi2< -i)sin(e + +(n2~-Y+0s(e ++) 

(B-15) 
a 

Z 
=;;+ a2$ 

PC 
(x+S 1 

+ iisin(e+ $1 +‘i code + $1 (B-16) 

In the above acceleration expressions, the coordinates 5, n ,5 are of a general point off 
the blade. These acceleration components in the undeformed system can be 
transformed into the deformed svstem components by again applying the transformation 

s 

of equation (A-4) as 

[ 

a 
X’ 

a l Y 
a l Z 

] = m[ ;J (B-17) 

The final acceleration components in the deformed system can be further simplified by 
applying the trigonometric approximations of equation (8) to yield 

a, = 
X 

‘i-2n; - Q2(x+ 5)+2Qi sin 8 

-2 52 fi cos 8 (B-18) 
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. . 

“y’ 
2 -- 2 = n+(Q xv+ w + n f3 

PC 
x) sin 8 

+(;j+2ni - n2v + *2x u)cose 

- f12r1 cos2 8 + l/2 Q2c sin2 6 

a, = 
Z t -(i;+ 2Qi- B2v+ Q2xp)sin 8 

+ ( S22 x v + W + Q2 fj 
PC 

x) ~0s 8 

- Cl25 sin2 8 + l/2 a20 sin20 

(B-19) 

(B-20) 
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APPENDIX C 

AERODYNAMIC COUPLING COEFFICIENTS 

In equation (132) the elastic deformations-dependent aerodynamic loads are 
expressed in a matrix form. The nonzero elements of these matrices are 

B65 

B10,3 

B10,5 

Bll,l 

B11,3 

Bl 1,c 

B11,5 

‘63 

clo,2 

cll,l 

c11,2 

%,3 

D62 

Dll,2 

+ pat Q2 R2 x 

-$ pat Q2xRA 

-$ pac($Q2x uf R Blc+ Q ‘P: R2Bpc) 

-3 pact-R2x Bpc) 

221222 -4 pact-52 x -pf ii! R) 

-$ pac(-Q2x uf R elc-T ’ a2 p;R2 Bpc) 

-4 pact-; Q2x) 

t pat ($I2 (2sZx) 

-ipac - 
[I 

nx( ec+ et) +$ pf fiRels -252RX 1 
-$pac [ 

2Qx(ec+ 8,)-uffiR els + QRX 1 
-$ pact-fix) 

-3 pac(% 51 xl 

- 3 p ac (tJ* 

$ P ac $1 
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For n= 1: 

B c63 = !j Pac(zJ2 pf Q2R 

B c10,3 = -3 Pact-Q2x uf R BP,) 

B c10,5= -8 Pat [ -Q2 X(ec+ et) ~f~R+$22p~R2~ 
1s 

-2 S22 pf R2 X 1 
B cl 1,3= -4 pact; pf Q2 R) 

B cl 1,4= -$ pat [ 2fi2xtec+ et) uf R-~ 1 02,fR2 els 

+ Q2 pfR2A 1 
B c11,5= -!j pac(a2x pf R) 

C ~65 = $ pac$’ uf S2R 

C c10,2 = -$ pac(S2x elc+2pf RR BP,) 

C cll,l = -4 pacG2 Six elc -pf QR Bpc) 

C c11,5 = - 4 Pat (- t O,R) 

B ~65 = 4 p ac $’ (2 Q2 pf R) 

B s10,3 = -4 pact&? 2 vf R2X 1 

B s10,5 = -4 pat ($ Q2 pgR2 elc) 

B s11,1= -$ pac(-n2pf R B,,J 
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B s11,3 = 

B sll,4 = 

B SllJ = 

C ~63 = 

C s10,2 = 

C sll,l = 

C s11,2 = 

C s11,3 = 

For n = 2 ; 

B c10,5 = 

B c11,3 = 

B c11,4 = 

C c10,2 = 

C cll,l = 

B s10,3 = 

B slO,5 = 

B sll,4 = 

-$ pact-2Q2xR p,) 

-i pac(-2 b2+3’ elc) 

-i pac($ i? pf R) 

i pat ($I2 (2 j.if 0 R) 

-$ pat 
[ QX els-pfm(ec+ et) 1 

-$ pat 
[ -252x els + 2 uf sm (e c + et) 1 

-f pat yf S1R 

-frpac(% + Q R) 

-4 pac(iR2x uf RBlc+ Q2u:R2 Bpc) 

-i pat ($ pf S12 R2) 

-+ pac(-n2x uf R 8 lc-$ Q2 ufR2 Bpc) 

-4 pact-$ vf QR els) 

-$ pac(pf QR els) 

-+ Pact-2 ’ Q2 uf R2 BP,) 

-$ pat 
1 $ R2x pf R els-4 fi2 p$t2(ec+ 8 t) 

1 

-3 pat C -Q2xUfR els+ s22pf2R2(ec+ et) 1 
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For n = 3 ; 

B sll,5 = -$ pat ( -4 Q2 u:R’) 

C s10,2 = -4 pac$ vfC2R Blc) 

C sll,l = - 4 pat (- pf ~2 R elc) 

B c10,5 = -$ pact-F ’ Q2 $R’ els) 

B c11,4 = -$ pact2 1 Q2 p;R2 els) 

B s10,5 = 
-$ pac(T;- 1 n2 p:R2 eIc) 

Bs11,4 = 
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APPENDIX D 

ROTOR CONFIGURATIONS 

Two rotor configurations have been considered in this investigation. The first is a 
uniform blade, and the second is typical of an operational blade with nonuniform 
properties. 

The uniform blade has the following properties: 

Radius, in . . . . . . . . . . . . . . 

Linear twist, deg . . . . . . . . . . . . 

Weight per unit length, lb/in . . . . . . . . . 

Flapwise mass moment of inertia per unit length, lb-in . 

Chordwise mass moment of inertia per unit length, lb-in . 

Flapwise bending stiffness, lb-in2 

Chordwise bending stiffness lb-in2 

Torsional rigidity, lb-in2 . . . 

Mass axis offset, in. . . . . 

Rotational speed, rpm . . . . 

The nonuniform blade has the 
illustrated in figures D-l through D-6. 

Radius, in . . . . . . . . 

Root cutout, in . . . . . . . 

Precone, rad . . . . . . . 

Rotational soeed. ram . . . . . 

properties listed in the following table and 
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. 260 

. -10 

. 0.5796 

. 0.3476 

. 15.456 
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. -0.6 
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Figure 1. - Cross-section coordinates before 
and after deformation. 
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(a) Forces. 

(b) Moments. 

Figure 2. - Equilibrium forces and moments. 
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Figure 3. - Blade-mounted flapping pendulum 
before deformation. 

Figure 4. - Flapping pendulum location after deformation. 
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Figure 5. - Free-body diagram of the element containing flapping pendulum. 
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Figure 6. - Lead-lag pendulum aftet’ deformation. 
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Figure 7. - Rotor blade airfoil inflow geometry. 
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Figure 8. - Geometry for aerodynamic velocity components. 
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Figure 13. - Root vertical shear for 4/Rev concentrated excitation, 
nonuniform blade, W = 133.45 N, nA = CA = 0. 
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